{"title":"磁镜陷阱中微波放电电磁场空间结构的数值模拟","authors":"S. A. Dvinin, M. A. Korneeva","doi":"10.1134/S1063780X23601438","DOIUrl":null,"url":null,"abstract":"<p>Results of computer simulation of the structure of the electromagnetic field of a microwave discharge in a quartz bulb placed in a cylindrical resonator the plasma of which is confined by a magnetic trap are presented. The cold plasma approximation is used. The cylindrical resonator is excited through a narrow slot in the lateral wall. It is shown that the traditional model of the electron cyclotron resonance in crossed fields in the discharge under study is applicable at low electron densities. An increase in the density is accompanied by the formation of a wave propagating in the azimuthal direction from the excitation region. With a further increase in the electron density, the absorption coefficient of the wave decreases and the angular distribution of the field has the form of a standing wave.</p>","PeriodicalId":735,"journal":{"name":"Plasma Physics Reports","volume":null,"pages":null},"PeriodicalIF":0.9000,"publicationDate":"2024-01-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Numerical Simulation of the Spatial Structure of the Electromagnetic Field of a Microwave Discharge in a Magnetic Mirror Trap\",\"authors\":\"S. A. Dvinin, M. A. Korneeva\",\"doi\":\"10.1134/S1063780X23601438\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Results of computer simulation of the structure of the electromagnetic field of a microwave discharge in a quartz bulb placed in a cylindrical resonator the plasma of which is confined by a magnetic trap are presented. The cold plasma approximation is used. The cylindrical resonator is excited through a narrow slot in the lateral wall. It is shown that the traditional model of the electron cyclotron resonance in crossed fields in the discharge under study is applicable at low electron densities. An increase in the density is accompanied by the formation of a wave propagating in the azimuthal direction from the excitation region. With a further increase in the electron density, the absorption coefficient of the wave decreases and the angular distribution of the field has the form of a standing wave.</p>\",\"PeriodicalId\":735,\"journal\":{\"name\":\"Plasma Physics Reports\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2024-01-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Plasma Physics Reports\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://link.springer.com/article/10.1134/S1063780X23601438\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"PHYSICS, FLUIDS & PLASMAS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plasma Physics Reports","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1134/S1063780X23601438","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"PHYSICS, FLUIDS & PLASMAS","Score":null,"Total":0}
Numerical Simulation of the Spatial Structure of the Electromagnetic Field of a Microwave Discharge in a Magnetic Mirror Trap
Results of computer simulation of the structure of the electromagnetic field of a microwave discharge in a quartz bulb placed in a cylindrical resonator the plasma of which is confined by a magnetic trap are presented. The cold plasma approximation is used. The cylindrical resonator is excited through a narrow slot in the lateral wall. It is shown that the traditional model of the electron cyclotron resonance in crossed fields in the discharge under study is applicable at low electron densities. An increase in the density is accompanied by the formation of a wave propagating in the azimuthal direction from the excitation region. With a further increase in the electron density, the absorption coefficient of the wave decreases and the angular distribution of the field has the form of a standing wave.
期刊介绍:
Plasma Physics Reports is a peer reviewed journal devoted to plasma physics. The journal covers the following topics: high-temperature plasma physics related to the problem of controlled nuclear fusion based on magnetic and inertial confinement; physics of cosmic plasma, including magnetosphere plasma, sun and stellar plasma, etc.; gas discharge plasma and plasma generated by laser and particle beams. The journal also publishes papers on such related topics as plasma electronics, generation of radiation in plasma, and plasma diagnostics. As well as other original communications, the journal publishes topical reviews and conference proceedings.