Sally J Coggins, Benjamin Kimble, Richard Malik, Mary F Thompson, Jacqueline M Norris, Merran Govendir
{"title":"评估雷米替韦(GS-5734)在猫血浆和全血中的体外稳定性以及向 GS-441524 的转化。","authors":"Sally J Coggins, Benjamin Kimble, Richard Malik, Mary F Thompson, Jacqueline M Norris, Merran Govendir","doi":"10.1080/01652176.2024.2305731","DOIUrl":null,"url":null,"abstract":"<p><p>Feline infectious peritonitis (FIP) is a potentially fatal coronavirus-driven disease of cats. Treatment with nucleoside analogue GS-441524 and or prodrug remdesivir (RDV) have produced remission in both experimentally induced and naturally occurring FIP, yet information regarding metabolism of RDV into GS-441524 in cats is scarce. This study assessed possible phase I metabolism of RDV in cats, utilising an <i>in vitro</i> feline microsome model with in vitro t<sub>1/2</sub> and <i>in vitro</i> Cl<sub>int</sub> calculated using the substrate depletion method. A previously validated high-performance liquid chromatography (HPLC) fluorescence method was utilised for detection and analysis of RDV and GS-441524. Qualitative yield of RDV and intermediate metabolite GS-441524 were determined following microsome incubation, then compared to whole blood and plasma incubations. <i>In vitro</i> microsome incubation resulted in rapid depletion of RDV, though it did not appear to resemble a conventional phase I-dependent reaction in cats, as it is in humans and dogs. Depletion of RDV into GS-441524 was demonstrated in whole blood <i>in vitro</i>, suggesting cats convert RDV to GS-441524, likely via blood esterases, as observed in mice and rats. RDV metabolism is unlikely to be impacted by impaired liver function in cats. Furthermore, as RDV depletes within minutes, whereas GS-441524 is very stable, whole blood or plasma GS-441524 concentrations, rather than plasma RDV concentrations, are more appropriate for therapeutic drug monitoring (TDM) in cats receiving RDV.</p>","PeriodicalId":51207,"journal":{"name":"Veterinary Quarterly","volume":"44 1","pages":"1-9"},"PeriodicalIF":7.9000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10829815/pdf/","citationCount":"0","resultStr":"{\"title\":\"Assessing <i>in vitro</i> stability of remdesivir (GS-5734) and conversion to GS-441524 in feline plasma and whole blood.\",\"authors\":\"Sally J Coggins, Benjamin Kimble, Richard Malik, Mary F Thompson, Jacqueline M Norris, Merran Govendir\",\"doi\":\"10.1080/01652176.2024.2305731\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Feline infectious peritonitis (FIP) is a potentially fatal coronavirus-driven disease of cats. Treatment with nucleoside analogue GS-441524 and or prodrug remdesivir (RDV) have produced remission in both experimentally induced and naturally occurring FIP, yet information regarding metabolism of RDV into GS-441524 in cats is scarce. This study assessed possible phase I metabolism of RDV in cats, utilising an <i>in vitro</i> feline microsome model with in vitro t<sub>1/2</sub> and <i>in vitro</i> Cl<sub>int</sub> calculated using the substrate depletion method. A previously validated high-performance liquid chromatography (HPLC) fluorescence method was utilised for detection and analysis of RDV and GS-441524. Qualitative yield of RDV and intermediate metabolite GS-441524 were determined following microsome incubation, then compared to whole blood and plasma incubations. <i>In vitro</i> microsome incubation resulted in rapid depletion of RDV, though it did not appear to resemble a conventional phase I-dependent reaction in cats, as it is in humans and dogs. Depletion of RDV into GS-441524 was demonstrated in whole blood <i>in vitro</i>, suggesting cats convert RDV to GS-441524, likely via blood esterases, as observed in mice and rats. RDV metabolism is unlikely to be impacted by impaired liver function in cats. Furthermore, as RDV depletes within minutes, whereas GS-441524 is very stable, whole blood or plasma GS-441524 concentrations, rather than plasma RDV concentrations, are more appropriate for therapeutic drug monitoring (TDM) in cats receiving RDV.</p>\",\"PeriodicalId\":51207,\"journal\":{\"name\":\"Veterinary Quarterly\",\"volume\":\"44 1\",\"pages\":\"1-9\"},\"PeriodicalIF\":7.9000,\"publicationDate\":\"2024-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10829815/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Veterinary Quarterly\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://doi.org/10.1080/01652176.2024.2305731\",\"RegionNum\":2,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/1/30 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"VETERINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Veterinary Quarterly","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1080/01652176.2024.2305731","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/30 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"VETERINARY SCIENCES","Score":null,"Total":0}
Assessing in vitro stability of remdesivir (GS-5734) and conversion to GS-441524 in feline plasma and whole blood.
Feline infectious peritonitis (FIP) is a potentially fatal coronavirus-driven disease of cats. Treatment with nucleoside analogue GS-441524 and or prodrug remdesivir (RDV) have produced remission in both experimentally induced and naturally occurring FIP, yet information regarding metabolism of RDV into GS-441524 in cats is scarce. This study assessed possible phase I metabolism of RDV in cats, utilising an in vitro feline microsome model with in vitro t1/2 and in vitro Clint calculated using the substrate depletion method. A previously validated high-performance liquid chromatography (HPLC) fluorescence method was utilised for detection and analysis of RDV and GS-441524. Qualitative yield of RDV and intermediate metabolite GS-441524 were determined following microsome incubation, then compared to whole blood and plasma incubations. In vitro microsome incubation resulted in rapid depletion of RDV, though it did not appear to resemble a conventional phase I-dependent reaction in cats, as it is in humans and dogs. Depletion of RDV into GS-441524 was demonstrated in whole blood in vitro, suggesting cats convert RDV to GS-441524, likely via blood esterases, as observed in mice and rats. RDV metabolism is unlikely to be impacted by impaired liver function in cats. Furthermore, as RDV depletes within minutes, whereas GS-441524 is very stable, whole blood or plasma GS-441524 concentrations, rather than plasma RDV concentrations, are more appropriate for therapeutic drug monitoring (TDM) in cats receiving RDV.
期刊介绍:
Veterinary Quarterly is an international open access journal which publishes high quality review articles and original research in the field of veterinary science and animal diseases. The journal publishes research on a range of different animal species and topics including: - Economically important species such as domesticated and non-domesticated farm animals, including avian and poultry diseases; - Companion animals (dogs, cats, horses, pocket pets and exotics); - Wildlife species; - Infectious diseases; - Diagnosis; - Treatment including pharmacology and vaccination