洋葱蝇昼夜节律钟在 1 °C 和 4 °C 温度变化时的弱相位和强相位响应曲线。

IF 2.3 2区 农林科学 Q1 ENTOMOLOGY
Yosuke Miyazaki , Kazuhiro Tanaka , Yasuhiko Watari
{"title":"洋葱蝇昼夜节律钟在 1 °C 和 4 °C 温度变化时的弱相位和强相位响应曲线。","authors":"Yosuke Miyazaki ,&nbsp;Kazuhiro Tanaka ,&nbsp;Yasuhiko Watari","doi":"10.1016/j.jinsphys.2024.104618","DOIUrl":null,"url":null,"abstract":"<div><p>With increasing soil depth, the amplitude and phase of the daily temperature cycle decreases and is delayed, respectively. The onion fly, <em>Delia antiqua</em>, which pupates at a soil depth of 2–20 cm, advances the eclosion phase of its circadian clock as the temperature amplitude decreases. This “temperature-amplitude response” compensates for the depth-dependent phase delay of the temperature change and ensures eclosion in the early morning. To clarify the physiological mechanisms that induce a temperature-amplitude response, we performed phase-resetting experiments using a 12-h high- or low-temperature pulse with an amplitude of 1 °C or 4 °C. Based on the results obtained, four phase transition curves and four phase response curves were constructed. These curves show that the phase of the eclosion clock shifted more as the magnitude of the temperature change increased. The 24-h temperature cycle delayed, rather than advanced, the phase of the <em>D. antiqua</em> circadian eclosion rhythm. Therefore, we propose that a small phase delay is caused by a small temperature amplitude at a deep site in the soil and a large phase delay is caused by a large temperature amplitude at a shallow site, leading to the temperature-amplitude response exhibited by <em>D. antiqua</em>.</p></div>","PeriodicalId":16189,"journal":{"name":"Journal of insect physiology","volume":null,"pages":null},"PeriodicalIF":2.3000,"publicationDate":"2024-01-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Weak and strong phase response curves of the onion fly circadian clock at temperature changes of 1 °C and 4 °C\",\"authors\":\"Yosuke Miyazaki ,&nbsp;Kazuhiro Tanaka ,&nbsp;Yasuhiko Watari\",\"doi\":\"10.1016/j.jinsphys.2024.104618\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>With increasing soil depth, the amplitude and phase of the daily temperature cycle decreases and is delayed, respectively. The onion fly, <em>Delia antiqua</em>, which pupates at a soil depth of 2–20 cm, advances the eclosion phase of its circadian clock as the temperature amplitude decreases. This “temperature-amplitude response” compensates for the depth-dependent phase delay of the temperature change and ensures eclosion in the early morning. To clarify the physiological mechanisms that induce a temperature-amplitude response, we performed phase-resetting experiments using a 12-h high- or low-temperature pulse with an amplitude of 1 °C or 4 °C. Based on the results obtained, four phase transition curves and four phase response curves were constructed. These curves show that the phase of the eclosion clock shifted more as the magnitude of the temperature change increased. The 24-h temperature cycle delayed, rather than advanced, the phase of the <em>D. antiqua</em> circadian eclosion rhythm. Therefore, we propose that a small phase delay is caused by a small temperature amplitude at a deep site in the soil and a large phase delay is caused by a large temperature amplitude at a shallow site, leading to the temperature-amplitude response exhibited by <em>D. antiqua</em>.</p></div>\",\"PeriodicalId\":16189,\"journal\":{\"name\":\"Journal of insect physiology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2024-01-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of insect physiology\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0022191024000064\",\"RegionNum\":2,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENTOMOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of insect physiology","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022191024000064","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENTOMOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

随着土壤深度的增加,日温度周期的振幅和相位分别减小和推迟。洋葱蝇(Delia antiqua)在 2-20 厘米深的土壤中化蛹,随着温度振幅的减小,它的昼夜节律时钟的蜕皮期也会提前。这种 "温度-振幅反应 "弥补了温度变化随深度变化而产生的相位延迟,并确保在清晨开始羽化。为了弄清诱导温幅反应的生理机制,我们利用振幅为 1 ℃ 或 4 ℃ 的 12 小时高温或低温脉冲进行了相位复位实验。根据所得结果,我们构建了四条相位转换曲线和四条相位响应曲线。这些曲线表明,随着温度变化幅度的增大,缩钟的相位移动幅度也增大。24 小时的温度周期推迟而不是提前了安提瓜天鹅昼夜节律的周期。因此,我们认为,土壤深层温度振幅小,相位延迟就小,而浅层温度振幅大,相位延迟就大,这就导致了蚁龙昼夜节律的温度振幅响应。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Weak and strong phase response curves of the onion fly circadian clock at temperature changes of 1 °C and 4 °C

Weak and strong phase response curves of the onion fly circadian clock at temperature changes of 1 °C and 4 °C

Weak and strong phase response curves of the onion fly circadian clock at temperature changes of 1 °C and 4 °C

With increasing soil depth, the amplitude and phase of the daily temperature cycle decreases and is delayed, respectively. The onion fly, Delia antiqua, which pupates at a soil depth of 2–20 cm, advances the eclosion phase of its circadian clock as the temperature amplitude decreases. This “temperature-amplitude response” compensates for the depth-dependent phase delay of the temperature change and ensures eclosion in the early morning. To clarify the physiological mechanisms that induce a temperature-amplitude response, we performed phase-resetting experiments using a 12-h high- or low-temperature pulse with an amplitude of 1 °C or 4 °C. Based on the results obtained, four phase transition curves and four phase response curves were constructed. These curves show that the phase of the eclosion clock shifted more as the magnitude of the temperature change increased. The 24-h temperature cycle delayed, rather than advanced, the phase of the D. antiqua circadian eclosion rhythm. Therefore, we propose that a small phase delay is caused by a small temperature amplitude at a deep site in the soil and a large phase delay is caused by a large temperature amplitude at a shallow site, leading to the temperature-amplitude response exhibited by D. antiqua.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of insect physiology
Journal of insect physiology 生物-昆虫学
CiteScore
4.50
自引率
4.50%
发文量
77
审稿时长
57 days
期刊介绍: All aspects of insect physiology are published in this journal which will also accept papers on the physiology of other arthropods, if the referees consider the work to be of general interest. The coverage includes endocrinology (in relation to moulting, reproduction and metabolism), pheromones, neurobiology (cellular, integrative and developmental), physiological pharmacology, nutrition (food selection, digestion and absorption), homeostasis, excretion, reproduction and behaviour. Papers covering functional genomics and molecular approaches to physiological problems will also be included. Communications on structure and applied entomology can be published if the subject matter has an explicit bearing on the physiology of arthropods. Review articles and novel method papers are also welcomed.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信