Ciro Mastantuoni, Lorenzo Ugga, Domenico Solari, Serena D'Aniello, Gaia Spadarella, Renato Cuocolo, Filippo F Angileri, Luigi M Cavallo
{"title":"利用基于核磁共振成像的放射组学和机器学习预测蝶窦病变内窥镜鼻内切除术后的糖尿病发生率。","authors":"Ciro Mastantuoni, Lorenzo Ugga, Domenico Solari, Serena D'Aniello, Gaia Spadarella, Renato Cuocolo, Filippo F Angileri, Luigi M Cavallo","doi":"10.23736/S0390-5616.23.06162-3","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Pituitary adenomas and craniopharyngiomas are the most common lesions of the sellar region. These tumors are responsible for invasion or compression of crucial neurovascular structures. The involvement of the pituitary stalk warrants high rates of both pre- and post- operative diabetes insipidus. The aim of our study was to assess the accuracy of machine learning analysis from preoperative MRI of pituitary adenomas and craniopharyngiomas for the prediction of DI occurrence.</p><p><strong>Methods: </strong>All patients underwent MRI exams either on a 1.5- or 3-T MR scanner from two Institutions, including coronal T2-weighted (T2-w) and contrast-enhanced T1-weighted (CE T1-w) Turbo Spin Echo sequences. Feature selection was carried out as a multi-step process, with a threshold of 0.75 to identify robust features. Further feature selection steps included filtering based on feature variance (threshold >0.01) and pairwise correlation (threshold <0.80). A Bayesian Network model was trained with 10-fold cross validation employing SMOTE to balance classes exclusively within the training folds.</p><p><strong>Results: </strong>Thirty patients were included in this study. In total 2394 features were extracted and 1791 (75%) resulted stable after ICC analysis. The number of variant features was 1351 and of non-colinear features was 125. Finally, 10 features were selected by oneR ranking. The Bayesian Network model showed an accuracy of 63% with a precision of 77% for DI prediction (0.68 area under the precision-recall curve).</p><p><strong>Conclusions: </strong>We assessed the accuracy of machine learning analysis of texture-derived parameters from preoperative MRI of pituitary adenomas and craniopharyngiomas for the prediction of DI occurrence.</p>","PeriodicalId":16504,"journal":{"name":"Journal of neurosurgical sciences","volume":null,"pages":null},"PeriodicalIF":1.3000,"publicationDate":"2024-01-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Prediction of diabetes insipidus occurrence after endoscopic endonasal removal of sellar lesions using MRI-based radiomics and machine learning.\",\"authors\":\"Ciro Mastantuoni, Lorenzo Ugga, Domenico Solari, Serena D'Aniello, Gaia Spadarella, Renato Cuocolo, Filippo F Angileri, Luigi M Cavallo\",\"doi\":\"10.23736/S0390-5616.23.06162-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Pituitary adenomas and craniopharyngiomas are the most common lesions of the sellar region. These tumors are responsible for invasion or compression of crucial neurovascular structures. The involvement of the pituitary stalk warrants high rates of both pre- and post- operative diabetes insipidus. The aim of our study was to assess the accuracy of machine learning analysis from preoperative MRI of pituitary adenomas and craniopharyngiomas for the prediction of DI occurrence.</p><p><strong>Methods: </strong>All patients underwent MRI exams either on a 1.5- or 3-T MR scanner from two Institutions, including coronal T2-weighted (T2-w) and contrast-enhanced T1-weighted (CE T1-w) Turbo Spin Echo sequences. Feature selection was carried out as a multi-step process, with a threshold of 0.75 to identify robust features. Further feature selection steps included filtering based on feature variance (threshold >0.01) and pairwise correlation (threshold <0.80). A Bayesian Network model was trained with 10-fold cross validation employing SMOTE to balance classes exclusively within the training folds.</p><p><strong>Results: </strong>Thirty patients were included in this study. In total 2394 features were extracted and 1791 (75%) resulted stable after ICC analysis. The number of variant features was 1351 and of non-colinear features was 125. Finally, 10 features were selected by oneR ranking. The Bayesian Network model showed an accuracy of 63% with a precision of 77% for DI prediction (0.68 area under the precision-recall curve).</p><p><strong>Conclusions: </strong>We assessed the accuracy of machine learning analysis of texture-derived parameters from preoperative MRI of pituitary adenomas and craniopharyngiomas for the prediction of DI occurrence.</p>\",\"PeriodicalId\":16504,\"journal\":{\"name\":\"Journal of neurosurgical sciences\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2024-01-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of neurosurgical sciences\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.23736/S0390-5616.23.06162-3\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"CLINICAL NEUROLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of neurosurgical sciences","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.23736/S0390-5616.23.06162-3","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CLINICAL NEUROLOGY","Score":null,"Total":0}
Prediction of diabetes insipidus occurrence after endoscopic endonasal removal of sellar lesions using MRI-based radiomics and machine learning.
Background: Pituitary adenomas and craniopharyngiomas are the most common lesions of the sellar region. These tumors are responsible for invasion or compression of crucial neurovascular structures. The involvement of the pituitary stalk warrants high rates of both pre- and post- operative diabetes insipidus. The aim of our study was to assess the accuracy of machine learning analysis from preoperative MRI of pituitary adenomas and craniopharyngiomas for the prediction of DI occurrence.
Methods: All patients underwent MRI exams either on a 1.5- or 3-T MR scanner from two Institutions, including coronal T2-weighted (T2-w) and contrast-enhanced T1-weighted (CE T1-w) Turbo Spin Echo sequences. Feature selection was carried out as a multi-step process, with a threshold of 0.75 to identify robust features. Further feature selection steps included filtering based on feature variance (threshold >0.01) and pairwise correlation (threshold <0.80). A Bayesian Network model was trained with 10-fold cross validation employing SMOTE to balance classes exclusively within the training folds.
Results: Thirty patients were included in this study. In total 2394 features were extracted and 1791 (75%) resulted stable after ICC analysis. The number of variant features was 1351 and of non-colinear features was 125. Finally, 10 features were selected by oneR ranking. The Bayesian Network model showed an accuracy of 63% with a precision of 77% for DI prediction (0.68 area under the precision-recall curve).
Conclusions: We assessed the accuracy of machine learning analysis of texture-derived parameters from preoperative MRI of pituitary adenomas and craniopharyngiomas for the prediction of DI occurrence.
期刊介绍:
The Journal of Neurosurgical Sciences publishes scientific papers on neurosurgery and related subjects (electroencephalography, neurophysiology, neurochemistry, neuropathology, stereotaxy, neuroanatomy, neuroradiology, etc.). Manuscripts may be submitted in the form of ditorials, original articles, review articles, special articles, letters to the Editor and guidelines. The journal aims to provide its readers with papers of the highest quality and impact through a process of careful peer review and editorial work.