Philipp Segeritz, Kirill Kolesnik, Daniel J. Scott and David J. Collins
{"title":"使用新型 96 孔流量插件对 GPR68 进行定量机械刺激。","authors":"Philipp Segeritz, Kirill Kolesnik, Daniel J. Scott and David J. Collins","doi":"10.1039/D3LC00767G","DOIUrl":null,"url":null,"abstract":"<p >Mechanosensitive proteins play a crucial role in a range of physiological processes, including hearing, tactile sensation and regulating blood flow. While previous work has demonstrated the mechanosensitivity of several proteins, the ability to apply precisely defined mechanical forces to cells in a consistent, replicable manner remains a significant challenge. In this work we present a novel 96-well plate-compatible plugin device for generating highly-controlled flow-based mechanical simulation of cells, which enables quantitative assessment of mechanosensitive protein function. The device is used to mechanically stimulate HEK 293T cells expressing the mechanosensitive protein GPR68, a G protein-coupled receptor. By assaying intracellular calcium levels during flow-based cell stimulation, we determine that GPR68 signalling is a function of the applied shear-force. As this approach is compatible with conventional cell culture plates and allows for simultaneous readout in a conventional fluorescence plate reader, this represents a valuable new tool to investigate mechanotransduction.</p>","PeriodicalId":85,"journal":{"name":"Lab on a Chip","volume":" 6","pages":" 1616-1625"},"PeriodicalIF":5.4000,"publicationDate":"2024-01-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Quantitative mechanical stimulation of GPR68 using a novel 96 well flow plugin†\",\"authors\":\"Philipp Segeritz, Kirill Kolesnik, Daniel J. Scott and David J. Collins\",\"doi\":\"10.1039/D3LC00767G\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Mechanosensitive proteins play a crucial role in a range of physiological processes, including hearing, tactile sensation and regulating blood flow. While previous work has demonstrated the mechanosensitivity of several proteins, the ability to apply precisely defined mechanical forces to cells in a consistent, replicable manner remains a significant challenge. In this work we present a novel 96-well plate-compatible plugin device for generating highly-controlled flow-based mechanical simulation of cells, which enables quantitative assessment of mechanosensitive protein function. The device is used to mechanically stimulate HEK 293T cells expressing the mechanosensitive protein GPR68, a G protein-coupled receptor. By assaying intracellular calcium levels during flow-based cell stimulation, we determine that GPR68 signalling is a function of the applied shear-force. As this approach is compatible with conventional cell culture plates and allows for simultaneous readout in a conventional fluorescence plate reader, this represents a valuable new tool to investigate mechanotransduction.</p>\",\"PeriodicalId\":85,\"journal\":{\"name\":\"Lab on a Chip\",\"volume\":\" 6\",\"pages\":\" 1616-1625\"},\"PeriodicalIF\":5.4000,\"publicationDate\":\"2024-01-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Lab on a Chip\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://pubs.rsc.org/en/content/articlelanding/2024/lc/d3lc00767g\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Lab on a Chip","FirstCategoryId":"5","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2024/lc/d3lc00767g","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
Quantitative mechanical stimulation of GPR68 using a novel 96 well flow plugin†
Mechanosensitive proteins play a crucial role in a range of physiological processes, including hearing, tactile sensation and regulating blood flow. While previous work has demonstrated the mechanosensitivity of several proteins, the ability to apply precisely defined mechanical forces to cells in a consistent, replicable manner remains a significant challenge. In this work we present a novel 96-well plate-compatible plugin device for generating highly-controlled flow-based mechanical simulation of cells, which enables quantitative assessment of mechanosensitive protein function. The device is used to mechanically stimulate HEK 293T cells expressing the mechanosensitive protein GPR68, a G protein-coupled receptor. By assaying intracellular calcium levels during flow-based cell stimulation, we determine that GPR68 signalling is a function of the applied shear-force. As this approach is compatible with conventional cell culture plates and allows for simultaneous readout in a conventional fluorescence plate reader, this represents a valuable new tool to investigate mechanotransduction.
期刊介绍:
Lab on a Chip is the premiere journal that publishes cutting-edge research in the field of miniaturization. By their very nature, microfluidic/nanofluidic/miniaturized systems are at the intersection of disciplines, spanning fundamental research to high-end application, which is reflected by the broad readership of the journal. Lab on a Chip publishes two types of papers on original research: full-length research papers and communications. Papers should demonstrate innovations, which can come from technical advancements or applications addressing pressing needs in globally important areas. The journal also publishes Comments, Reviews, and Perspectives.