{"title":"结合图谱和超图谱卷积网络预测 miRNA 与疾病的关联性","authors":"Xujun Liang, Ming Guo, Longying Jiang, Ying Fu, Pengfei Zhang, Yongheng Chen","doi":"10.1007/s12539-023-00599-3","DOIUrl":null,"url":null,"abstract":"<p><p>miRNAs are important regulators for many crucial biological processes. Many recent studies have shown that miRNAs are closely related to various human diseases and can be potential biomarkers or therapeutic targets for some diseases, such as cancers. Therefore, accurately predicting miRNA-disease associations is of great importance for understanding and curing diseases. However, how to efficiently utilize the characteristics of miRNAs and diseases and the information on known miRNA-disease associations for prediction is still not fully explored. In this study, we propose a novel computational method for predicting miRNA-disease associations. The proposed method combines the graph convolutional network and the hypergraph convolutional network. The graph convolutional network is utilized to extract the information from miRNA-similarity data as well as disease-similarity data. Based on the representations of miRNAs and diseases learned by the graph convolutional network, we further use the hypergraph convolutional network to capture the complex high-order interactions in the known miRNA-disease associations. We conduct comprehensive experiments with different datasets and predictive tasks. The results show that the proposed method consistently outperforms several other state-of-the-art methods. We also discuss the influence of hyper-parameters and model structures on the performance of our method. Some case studies also demonstrate that the predictive results of the method can be verified by independent experiments.</p>","PeriodicalId":13670,"journal":{"name":"Interdisciplinary Sciences: Computational Life Sciences","volume":" ","pages":"289-303"},"PeriodicalIF":3.9000,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Predicting miRNA-Disease Associations by Combining Graph and Hypergraph Convolutional Network.\",\"authors\":\"Xujun Liang, Ming Guo, Longying Jiang, Ying Fu, Pengfei Zhang, Yongheng Chen\",\"doi\":\"10.1007/s12539-023-00599-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>miRNAs are important regulators for many crucial biological processes. Many recent studies have shown that miRNAs are closely related to various human diseases and can be potential biomarkers or therapeutic targets for some diseases, such as cancers. Therefore, accurately predicting miRNA-disease associations is of great importance for understanding and curing diseases. However, how to efficiently utilize the characteristics of miRNAs and diseases and the information on known miRNA-disease associations for prediction is still not fully explored. In this study, we propose a novel computational method for predicting miRNA-disease associations. The proposed method combines the graph convolutional network and the hypergraph convolutional network. The graph convolutional network is utilized to extract the information from miRNA-similarity data as well as disease-similarity data. Based on the representations of miRNAs and diseases learned by the graph convolutional network, we further use the hypergraph convolutional network to capture the complex high-order interactions in the known miRNA-disease associations. We conduct comprehensive experiments with different datasets and predictive tasks. The results show that the proposed method consistently outperforms several other state-of-the-art methods. We also discuss the influence of hyper-parameters and model structures on the performance of our method. Some case studies also demonstrate that the predictive results of the method can be verified by independent experiments.</p>\",\"PeriodicalId\":13670,\"journal\":{\"name\":\"Interdisciplinary Sciences: Computational Life Sciences\",\"volume\":\" \",\"pages\":\"289-303\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2024-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Interdisciplinary Sciences: Computational Life Sciences\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1007/s12539-023-00599-3\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/1/29 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICAL & COMPUTATIONAL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Interdisciplinary Sciences: Computational Life Sciences","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s12539-023-00599-3","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/29 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"MATHEMATICAL & COMPUTATIONAL BIOLOGY","Score":null,"Total":0}
Predicting miRNA-Disease Associations by Combining Graph and Hypergraph Convolutional Network.
miRNAs are important regulators for many crucial biological processes. Many recent studies have shown that miRNAs are closely related to various human diseases and can be potential biomarkers or therapeutic targets for some diseases, such as cancers. Therefore, accurately predicting miRNA-disease associations is of great importance for understanding and curing diseases. However, how to efficiently utilize the characteristics of miRNAs and diseases and the information on known miRNA-disease associations for prediction is still not fully explored. In this study, we propose a novel computational method for predicting miRNA-disease associations. The proposed method combines the graph convolutional network and the hypergraph convolutional network. The graph convolutional network is utilized to extract the information from miRNA-similarity data as well as disease-similarity data. Based on the representations of miRNAs and diseases learned by the graph convolutional network, we further use the hypergraph convolutional network to capture the complex high-order interactions in the known miRNA-disease associations. We conduct comprehensive experiments with different datasets and predictive tasks. The results show that the proposed method consistently outperforms several other state-of-the-art methods. We also discuss the influence of hyper-parameters and model structures on the performance of our method. Some case studies also demonstrate that the predictive results of the method can be verified by independent experiments.
期刊介绍:
Interdisciplinary Sciences--Computational Life Sciences aims to cover the most recent and outstanding developments in interdisciplinary areas of sciences, especially focusing on computational life sciences, an area that is enjoying rapid development at the forefront of scientific research and technology.
The journal publishes original papers of significant general interest covering recent research and developments. Articles will be published rapidly by taking full advantage of internet technology for online submission and peer-reviewing of manuscripts, and then by publishing OnlineFirstTM through SpringerLink even before the issue is built or sent to the printer.
The editorial board consists of many leading scientists with international reputation, among others, Luc Montagnier (UNESCO, France), Dennis Salahub (University of Calgary, Canada), Weitao Yang (Duke University, USA). Prof. Dongqing Wei at the Shanghai Jiatong University is appointed as the editor-in-chief; he made important contributions in bioinformatics and computational physics and is best known for his ground-breaking works on the theory of ferroelectric liquids. With the help from a team of associate editors and the editorial board, an international journal with sound reputation shall be created.