Stefan Wettengel;Andreas Hoffmann;Jonas Kienast;Lars Lindenmüller;Steffen Bernet
{"title":"具有可调电流形状的模块化动态 100 kA 浪涌电流源的拓扑结构、设计和特性","authors":"Stefan Wettengel;Andreas Hoffmann;Jonas Kienast;Lars Lindenmüller;Steffen Bernet","doi":"10.1109/OJIA.2024.3353328","DOIUrl":null,"url":null,"abstract":"To guarantee sufficient surge current fault protection for power electronic converters, power semiconductors have to be tested under appropriate surge current conditions. Standard maximum surge current values include the permissible fault current amplitude, or the \n<italic>I</i>\n<sup>2</sup>\n<italic>t</i>\n-value; however, they might not be sufficient to describe a power semiconductor's performance under all potential fault conditions. Surge current sources based on passive components are state-of-the-art, but are limited to usually only one specific current waveform. This article describes the topology and the design of a new modular and highly dynamic surge current source for power semiconductor tests with adjustable current waveforms. The new modular converter concept is introduced, with two potential operation modes: High current mode (HCM) and dynamic current mode (DCM). The requirements for the surge current tester are defined, and the electrical and mechanical design are described, including the modulation scheme and control. Experimental investigations prove the function of the current source with peak currents up to 100 kA (HCM) and the realization of highly dynamic load current trajectories with peak currents up to 50 kA (DCM). The output current ripple is exceptionally small with a theoretical value of below 1%.","PeriodicalId":100629,"journal":{"name":"IEEE Open Journal of Industry Applications","volume":"5 ","pages":"29-42"},"PeriodicalIF":7.9000,"publicationDate":"2024-01-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10398419","citationCount":"0","resultStr":"{\"title\":\"Topology, Design, and Characteristics of a Modular, Dynamic 100 kA Surge Current Source With Adjustable Current Shape\",\"authors\":\"Stefan Wettengel;Andreas Hoffmann;Jonas Kienast;Lars Lindenmüller;Steffen Bernet\",\"doi\":\"10.1109/OJIA.2024.3353328\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"To guarantee sufficient surge current fault protection for power electronic converters, power semiconductors have to be tested under appropriate surge current conditions. Standard maximum surge current values include the permissible fault current amplitude, or the \\n<italic>I</i>\\n<sup>2</sup>\\n<italic>t</i>\\n-value; however, they might not be sufficient to describe a power semiconductor's performance under all potential fault conditions. Surge current sources based on passive components are state-of-the-art, but are limited to usually only one specific current waveform. This article describes the topology and the design of a new modular and highly dynamic surge current source for power semiconductor tests with adjustable current waveforms. The new modular converter concept is introduced, with two potential operation modes: High current mode (HCM) and dynamic current mode (DCM). The requirements for the surge current tester are defined, and the electrical and mechanical design are described, including the modulation scheme and control. Experimental investigations prove the function of the current source with peak currents up to 100 kA (HCM) and the realization of highly dynamic load current trajectories with peak currents up to 50 kA (DCM). The output current ripple is exceptionally small with a theoretical value of below 1%.\",\"PeriodicalId\":100629,\"journal\":{\"name\":\"IEEE Open Journal of Industry Applications\",\"volume\":\"5 \",\"pages\":\"29-42\"},\"PeriodicalIF\":7.9000,\"publicationDate\":\"2024-01-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10398419\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Open Journal of Industry Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10398419/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Open Journal of Industry Applications","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10398419/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Topology, Design, and Characteristics of a Modular, Dynamic 100 kA Surge Current Source With Adjustable Current Shape
To guarantee sufficient surge current fault protection for power electronic converters, power semiconductors have to be tested under appropriate surge current conditions. Standard maximum surge current values include the permissible fault current amplitude, or the
I
2t
-value; however, they might not be sufficient to describe a power semiconductor's performance under all potential fault conditions. Surge current sources based on passive components are state-of-the-art, but are limited to usually only one specific current waveform. This article describes the topology and the design of a new modular and highly dynamic surge current source for power semiconductor tests with adjustable current waveforms. The new modular converter concept is introduced, with two potential operation modes: High current mode (HCM) and dynamic current mode (DCM). The requirements for the surge current tester are defined, and the electrical and mechanical design are described, including the modulation scheme and control. Experimental investigations prove the function of the current source with peak currents up to 100 kA (HCM) and the realization of highly dynamic load current trajectories with peak currents up to 50 kA (DCM). The output current ripple is exceptionally small with a theoretical value of below 1%.