利用射频传感器对肺水含量进行建模和分析

Prapti Ganguly;Shreyasi Das;Amlan Chakrabarti;Jawad Yaseen Siddiqui
{"title":"利用射频传感器对肺水含量进行建模和分析","authors":"Prapti Ganguly;Shreyasi Das;Amlan Chakrabarti;Jawad Yaseen Siddiqui","doi":"10.1109/OJIM.2023.3348904","DOIUrl":null,"url":null,"abstract":"Abnormal fluid buildup in the lungs, termed pulmonary edema (PE), is a result of congestive heart failure. It is a life-threatening condition, and early detection and prompt treatment can help save lives. In this article, we demonstrate the feasibility of using a microwave sensor to monitor changes in lung water content and hence detect PE. The research paper utilizes a combination of the Debye and Maxwell models, along with the Cole–Cole equation, to evaluate alterations in the dielectric properties and conductivity of lung tissue. By incorporating elements such as air and water found within the tissue, this dielectric model has been employed to foresee how lung tissues behave when subjected to different levels of hydration and inflation. A printed antenna resonating at 2.4 GHz was designed to work as a sensor. The static dielectric parameters of lung tissue at various water volume fractions were calculated at 2.4 GHz using the Debye–Maxwell model. These parameters were substituted in the Cole–Cole equation to calculate the dielectric constant of lung tissue for different levels of water in the lungs. These values were then substituted in the simulation environment, where the sensor is placed on blocks modeling the human thorax. This work is a first of its kind where the dielectric parameters at different levels of hydration have been previously estimated using mathematical models and substituted accordingly in the modeling environment to test the possibility of detection of PE with high precision. It was observed that the magnitude of the reflection coefficient values changes with increasing water volume fraction, making the microwave method of detection of PE feasible and a reliable technique.","PeriodicalId":100630,"journal":{"name":"IEEE Open Journal of Instrumentation and Measurement","volume":"3 ","pages":"1-8"},"PeriodicalIF":0.0000,"publicationDate":"2024-01-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10380229","citationCount":"0","resultStr":"{\"title\":\"Modeling and Analysis of Lung Water Content Using RF Sensor\",\"authors\":\"Prapti Ganguly;Shreyasi Das;Amlan Chakrabarti;Jawad Yaseen Siddiqui\",\"doi\":\"10.1109/OJIM.2023.3348904\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abnormal fluid buildup in the lungs, termed pulmonary edema (PE), is a result of congestive heart failure. It is a life-threatening condition, and early detection and prompt treatment can help save lives. In this article, we demonstrate the feasibility of using a microwave sensor to monitor changes in lung water content and hence detect PE. The research paper utilizes a combination of the Debye and Maxwell models, along with the Cole–Cole equation, to evaluate alterations in the dielectric properties and conductivity of lung tissue. By incorporating elements such as air and water found within the tissue, this dielectric model has been employed to foresee how lung tissues behave when subjected to different levels of hydration and inflation. A printed antenna resonating at 2.4 GHz was designed to work as a sensor. The static dielectric parameters of lung tissue at various water volume fractions were calculated at 2.4 GHz using the Debye–Maxwell model. These parameters were substituted in the Cole–Cole equation to calculate the dielectric constant of lung tissue for different levels of water in the lungs. These values were then substituted in the simulation environment, where the sensor is placed on blocks modeling the human thorax. This work is a first of its kind where the dielectric parameters at different levels of hydration have been previously estimated using mathematical models and substituted accordingly in the modeling environment to test the possibility of detection of PE with high precision. It was observed that the magnitude of the reflection coefficient values changes with increasing water volume fraction, making the microwave method of detection of PE feasible and a reliable technique.\",\"PeriodicalId\":100630,\"journal\":{\"name\":\"IEEE Open Journal of Instrumentation and Measurement\",\"volume\":\"3 \",\"pages\":\"1-8\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-01-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10380229\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Open Journal of Instrumentation and Measurement\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10380229/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Open Journal of Instrumentation and Measurement","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10380229/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

肺部异常积液,即肺水肿(PE),是充血性心力衰竭的结果。肺水肿危及生命,早期发现和及时治疗有助于挽救生命。在本文中,我们展示了使用微波传感器监测肺水含量变化从而检测肺水肿的可行性。研究论文结合使用了德拜模型和麦克斯韦模型以及科尔-科尔方程,以评估肺组织介电性质和电导率的变化。通过结合组织内的空气和水等元素,该介电模型可用于预测肺组织在不同程度的水合和充气情况下的表现。设计了一个共振频率为 2.4 GHz 的印刷天线作为传感器。在 2.4 GHz 频率下,使用 Debye-Maxwell 模型计算了肺组织在不同水体积分数下的静态介电参数。将这些参数代入科尔-科尔方程,即可计算出肺部不同水含量下肺组织的介电常数。然后将这些值代入仿真环境,在仿真环境中,传感器被放置在模拟人体胸腔的块上。这项工作是首次使用数学模型估算不同水化水平下的介电参数,并在建模环境中进行相应替换,以测试高精度检测 PE 的可能性。据观察,反射系数值的大小随水体积分数的增加而变化,这使得微波法检测 PE 成为一种可行和可靠的技术。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Modeling and Analysis of Lung Water Content Using RF Sensor
Abnormal fluid buildup in the lungs, termed pulmonary edema (PE), is a result of congestive heart failure. It is a life-threatening condition, and early detection and prompt treatment can help save lives. In this article, we demonstrate the feasibility of using a microwave sensor to monitor changes in lung water content and hence detect PE. The research paper utilizes a combination of the Debye and Maxwell models, along with the Cole–Cole equation, to evaluate alterations in the dielectric properties and conductivity of lung tissue. By incorporating elements such as air and water found within the tissue, this dielectric model has been employed to foresee how lung tissues behave when subjected to different levels of hydration and inflation. A printed antenna resonating at 2.4 GHz was designed to work as a sensor. The static dielectric parameters of lung tissue at various water volume fractions were calculated at 2.4 GHz using the Debye–Maxwell model. These parameters were substituted in the Cole–Cole equation to calculate the dielectric constant of lung tissue for different levels of water in the lungs. These values were then substituted in the simulation environment, where the sensor is placed on blocks modeling the human thorax. This work is a first of its kind where the dielectric parameters at different levels of hydration have been previously estimated using mathematical models and substituted accordingly in the modeling environment to test the possibility of detection of PE with high precision. It was observed that the magnitude of the reflection coefficient values changes with increasing water volume fraction, making the microwave method of detection of PE feasible and a reliable technique.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信