癌症中的骨蛋白

Advances in clinical chemistry Pub Date : 2024-01-01 Epub Date: 2024-01-06 DOI:10.1016/bs.acc.2023.11.002
Alpana Kumari, Dharambir Kashyap, Vivek Kumar Garg
{"title":"癌症中的骨蛋白","authors":"Alpana Kumari, Dharambir Kashyap, Vivek Kumar Garg","doi":"10.1016/bs.acc.2023.11.002","DOIUrl":null,"url":null,"abstract":"<p><p>Osteopontin (OPN) is a heavily post-translationally modified protein with a molecular weight of 44-70 kDa, depending on the degree of glycosylation. OPN is involved in various biological processes, including bone remodeling, immune response, cell adhesion, migration, and survival. It is essential for controlling osteoclast and osteoblast activity for maintaining bone mass and bone strength. Additionally, OPN has been linked to cardiovascular, inflammatory illnesses, as well as the onset and progression of cancer. OPN is a multifunctional protein that can interact with a variety of cell surface receptors, such as integrins, CD44, the urokinase-type plasminogen activator receptor (uPAR), as well as extracellular matrix (ECM) components (e.g. collagen and hydroxyapatite). These interactions contribute to its wide range of biological functions in general and has significant implications for bone biology, immunology and cancer, specifically. In this chapter, we summarize the structure of OPN with a focus on its molecular mechanisms of action in various cancers.</p>","PeriodicalId":101297,"journal":{"name":"Advances in clinical chemistry","volume":"118 ","pages":"87-110"},"PeriodicalIF":0.0000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Osteopontin in cancer.\",\"authors\":\"Alpana Kumari, Dharambir Kashyap, Vivek Kumar Garg\",\"doi\":\"10.1016/bs.acc.2023.11.002\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Osteopontin (OPN) is a heavily post-translationally modified protein with a molecular weight of 44-70 kDa, depending on the degree of glycosylation. OPN is involved in various biological processes, including bone remodeling, immune response, cell adhesion, migration, and survival. It is essential for controlling osteoclast and osteoblast activity for maintaining bone mass and bone strength. Additionally, OPN has been linked to cardiovascular, inflammatory illnesses, as well as the onset and progression of cancer. OPN is a multifunctional protein that can interact with a variety of cell surface receptors, such as integrins, CD44, the urokinase-type plasminogen activator receptor (uPAR), as well as extracellular matrix (ECM) components (e.g. collagen and hydroxyapatite). These interactions contribute to its wide range of biological functions in general and has significant implications for bone biology, immunology and cancer, specifically. In this chapter, we summarize the structure of OPN with a focus on its molecular mechanisms of action in various cancers.</p>\",\"PeriodicalId\":101297,\"journal\":{\"name\":\"Advances in clinical chemistry\",\"volume\":\"118 \",\"pages\":\"87-110\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in clinical chemistry\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1016/bs.acc.2023.11.002\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/1/6 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in clinical chemistry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/bs.acc.2023.11.002","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/6 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

骨化蛋白(OPN)是一种经过大量翻译后修饰的蛋白质,分子量为 44-70 kDa,具体取决于糖基化程度。OPN 参与各种生物过程,包括骨重塑、免疫反应、细胞粘附、迁移和存活。它对控制破骨细胞和成骨细胞的活动以保持骨量和骨强度至关重要。此外,OPN 还与心血管疾病、炎症以及癌症的发生和发展有关。OPN 是一种多功能蛋白质,可与多种细胞表面受体相互作用,如整合素、CD44、尿激酶型纤溶酶原激活剂受体(uPAR)以及细胞外基质(ECM)成分(如胶原蛋白和羟基磷灰石)。这些相互作用有助于其广泛的生物功能,特别是对骨生物学、免疫学和癌症具有重要影响。在本章中,我们将总结 OPN 的结构,重点介绍其在各种癌症中的分子作用机制。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Osteopontin in cancer.

Osteopontin (OPN) is a heavily post-translationally modified protein with a molecular weight of 44-70 kDa, depending on the degree of glycosylation. OPN is involved in various biological processes, including bone remodeling, immune response, cell adhesion, migration, and survival. It is essential for controlling osteoclast and osteoblast activity for maintaining bone mass and bone strength. Additionally, OPN has been linked to cardiovascular, inflammatory illnesses, as well as the onset and progression of cancer. OPN is a multifunctional protein that can interact with a variety of cell surface receptors, such as integrins, CD44, the urokinase-type plasminogen activator receptor (uPAR), as well as extracellular matrix (ECM) components (e.g. collagen and hydroxyapatite). These interactions contribute to its wide range of biological functions in general and has significant implications for bone biology, immunology and cancer, specifically. In this chapter, we summarize the structure of OPN with a focus on its molecular mechanisms of action in various cancers.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信