[膀胱尿路上皮癌的组织分子分类 :从组织学表型到基因型再到组织学表型]。

Pathologie (Heidelberg, Germany) Pub Date : 2024-03-01 Epub Date: 2024-01-29 DOI:10.1007/s00292-024-01305-w
Alexandra K Stoll, Florestan J Koll, Markus Eckstein, Henning Reis, Nadine Flinner, Peter J Wild, Jochen Triesch
{"title":"[膀胱尿路上皮癌的组织分子分类 :从组织学表型到基因型再到组织学表型]。","authors":"Alexandra K Stoll, Florestan J Koll, Markus Eckstein, Henning Reis, Nadine Flinner, Peter J Wild, Jochen Triesch","doi":"10.1007/s00292-024-01305-w","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Of all urothelial carcinomas (UCs), 25% are muscle invasive and associated with a 5-year overall survival rate of 50%. Findings regarding the molecular classification of muscle-invasive urothelial carcinomas (MIUCs) have not yet found their way into clinical practice.</p><p><strong>Objectives: </strong>Prediction of molecular consensus subtypes in MIUCs with artificial intelligence (AI) based on histologic hematoxylin-eosin (HE) sections.</p><p><strong>Methods: </strong>Pathologic review and annotation of The Cancer Genome Atlas (TCGA) Bladder Cancer (BLCA) Cohort (N = 412) and the Dr. Senckenberg Institute of Pathology (SIP) BLCA Cohort (N = 181). An AI model for the prediction of molecular subtypes based on annotated histomorphology was trained.</p><p><strong>Results: </strong>For a five-fold cross-validation with TCGA cases (N = 274), an internal TCGA test set (N = 18) and an external SIP test set (N = 27), we reached mean area under the receiver operating characteristic curve (AUROC) scores of 0.73, 0.8 and 0.75 for the classification of the used molecular subtypes \"luminal\", \"basal/squamous\" and \"stroma-rich\". By training on correlations to individual molecular subtypes, rather than training on one subtype assignment per case, the AI prediction of subtypes could be significantly improved.</p><p><strong>Discussion: </strong>Follow-up studies with RNA extraction from various areas of AI-predicted molecular heterogeneity may improve molecular classifications and thereby AI algorithms trained on these classifications.</p>","PeriodicalId":74402,"journal":{"name":"Pathologie (Heidelberg, Germany)","volume":" ","pages":"106-114"},"PeriodicalIF":0.0000,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10901926/pdf/","citationCount":"0","resultStr":"{\"title\":\"[Histomolecular classification of urothelial carcinoma of the urinary bladder : From histological phenotype to genotype and back].\",\"authors\":\"Alexandra K Stoll, Florestan J Koll, Markus Eckstein, Henning Reis, Nadine Flinner, Peter J Wild, Jochen Triesch\",\"doi\":\"10.1007/s00292-024-01305-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Of all urothelial carcinomas (UCs), 25% are muscle invasive and associated with a 5-year overall survival rate of 50%. Findings regarding the molecular classification of muscle-invasive urothelial carcinomas (MIUCs) have not yet found their way into clinical practice.</p><p><strong>Objectives: </strong>Prediction of molecular consensus subtypes in MIUCs with artificial intelligence (AI) based on histologic hematoxylin-eosin (HE) sections.</p><p><strong>Methods: </strong>Pathologic review and annotation of The Cancer Genome Atlas (TCGA) Bladder Cancer (BLCA) Cohort (N = 412) and the Dr. Senckenberg Institute of Pathology (SIP) BLCA Cohort (N = 181). An AI model for the prediction of molecular subtypes based on annotated histomorphology was trained.</p><p><strong>Results: </strong>For a five-fold cross-validation with TCGA cases (N = 274), an internal TCGA test set (N = 18) and an external SIP test set (N = 27), we reached mean area under the receiver operating characteristic curve (AUROC) scores of 0.73, 0.8 and 0.75 for the classification of the used molecular subtypes \\\"luminal\\\", \\\"basal/squamous\\\" and \\\"stroma-rich\\\". By training on correlations to individual molecular subtypes, rather than training on one subtype assignment per case, the AI prediction of subtypes could be significantly improved.</p><p><strong>Discussion: </strong>Follow-up studies with RNA extraction from various areas of AI-predicted molecular heterogeneity may improve molecular classifications and thereby AI algorithms trained on these classifications.</p>\",\"PeriodicalId\":74402,\"journal\":{\"name\":\"Pathologie (Heidelberg, Germany)\",\"volume\":\" \",\"pages\":\"106-114\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10901926/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Pathologie (Heidelberg, Germany)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s00292-024-01305-w\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/1/29 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pathologie (Heidelberg, Germany)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s00292-024-01305-w","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/29 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

背景:在所有尿路上皮癌(UC)中,25%为肌层浸润癌,5年总生存率为50%。有关肌层浸润性尿路上皮癌(MIUC)分子分类的研究结果尚未应用于临床实践:基于组织学苏木精-伊红(HE)切片,用人工智能(AI)预测肌浸润性尿路上皮癌的分子共识亚型:方法:对癌症基因组图谱(TCGA)膀胱癌(BLCA)队列(N = 412)和森肯伯格博士病理研究所(SIP)膀胱癌队列(N = 181)进行病理学审查和注释。训练了一个基于注释组织形态学预测分子亚型的人工智能模型:在使用 TCGA 病例(N = 274)、内部 TCGA 测试集(N = 18)和外部苏州工业园区测试集(N = 27)进行的五倍交叉验证中,我们对所用分子亚型 "管腔型"、"基底/鳞状 "和 "富基质 "的分类得出的平均接收者操作特征曲线下面积(AUROC)分数分别为 0.73、0.8 和 0.75。通过对各个分子亚型的相关性进行训练,而不是对每个病例的一个亚型分配进行训练,可以显著提高亚型的人工智能预测能力:讨论:从人工智能预测的分子异质性的不同区域提取 RNA 进行后续研究,可能会改进分子分类,从而改进根据这些分类训练的人工智能算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
[Histomolecular classification of urothelial carcinoma of the urinary bladder : From histological phenotype to genotype and back].

Background: Of all urothelial carcinomas (UCs), 25% are muscle invasive and associated with a 5-year overall survival rate of 50%. Findings regarding the molecular classification of muscle-invasive urothelial carcinomas (MIUCs) have not yet found their way into clinical practice.

Objectives: Prediction of molecular consensus subtypes in MIUCs with artificial intelligence (AI) based on histologic hematoxylin-eosin (HE) sections.

Methods: Pathologic review and annotation of The Cancer Genome Atlas (TCGA) Bladder Cancer (BLCA) Cohort (N = 412) and the Dr. Senckenberg Institute of Pathology (SIP) BLCA Cohort (N = 181). An AI model for the prediction of molecular subtypes based on annotated histomorphology was trained.

Results: For a five-fold cross-validation with TCGA cases (N = 274), an internal TCGA test set (N = 18) and an external SIP test set (N = 27), we reached mean area under the receiver operating characteristic curve (AUROC) scores of 0.73, 0.8 and 0.75 for the classification of the used molecular subtypes "luminal", "basal/squamous" and "stroma-rich". By training on correlations to individual molecular subtypes, rather than training on one subtype assignment per case, the AI prediction of subtypes could be significantly improved.

Discussion: Follow-up studies with RNA extraction from various areas of AI-predicted molecular heterogeneity may improve molecular classifications and thereby AI algorithms trained on these classifications.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信