Raphael Rehms, Nicole Ellenbach, Eva Rehfuess, Jacob Burns, Ulrich Mansmann, Sabine Hoffmann
{"title":"在传染病建模中考虑证据和不确定性的贝叶斯分层方法:应用于 COVID-19。","authors":"Raphael Rehms, Nicole Ellenbach, Eva Rehfuess, Jacob Burns, Ulrich Mansmann, Sabine Hoffmann","doi":"10.1002/bimj.202200341","DOIUrl":null,"url":null,"abstract":"<p>Infectious disease models can serve as critical tools to predict the development of cases and associated healthcare demand and to determine the set of nonpharmaceutical interventions (NPIs) that is most effective in slowing the spread of an infectious agent. Current approaches to estimate NPI effects typically focus on relatively short time periods and either on the number of reported cases, deaths, intensive care occupancy, or hospital occupancy as a single indicator of disease transmission. In this work, we propose a Bayesian hierarchical model that integrates multiple outcomes and complementary sources of information in the estimation of the true and unknown number of infections while accounting for time-varying underreporting and weekday-specific delays in reported cases and deaths, allowing us to estimate the number of infections on a daily basis rather than having to smooth the data. To address dynamic changes occurring over long periods of time, we account for the spread of new variants, seasonality, and time-varying differences in host susceptibility. We implement a Markov chain Monte Carlo algorithm to conduct Bayesian inference and illustrate the proposed approach with data on COVID-19 from 20 European countries. The approach shows good performance on simulated data and produces posterior predictions that show a good fit to reported cases, deaths, hospital, and intensive care occupancy.</p>","PeriodicalId":55360,"journal":{"name":"Biometrical Journal","volume":"66 1","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2024-01-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/bimj.202200341","citationCount":"0","resultStr":"{\"title\":\"A Bayesian hierarchical approach to account for evidence and uncertainty in the modeling of infectious diseases: An application to COVID-19\",\"authors\":\"Raphael Rehms, Nicole Ellenbach, Eva Rehfuess, Jacob Burns, Ulrich Mansmann, Sabine Hoffmann\",\"doi\":\"10.1002/bimj.202200341\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Infectious disease models can serve as critical tools to predict the development of cases and associated healthcare demand and to determine the set of nonpharmaceutical interventions (NPIs) that is most effective in slowing the spread of an infectious agent. Current approaches to estimate NPI effects typically focus on relatively short time periods and either on the number of reported cases, deaths, intensive care occupancy, or hospital occupancy as a single indicator of disease transmission. In this work, we propose a Bayesian hierarchical model that integrates multiple outcomes and complementary sources of information in the estimation of the true and unknown number of infections while accounting for time-varying underreporting and weekday-specific delays in reported cases and deaths, allowing us to estimate the number of infections on a daily basis rather than having to smooth the data. To address dynamic changes occurring over long periods of time, we account for the spread of new variants, seasonality, and time-varying differences in host susceptibility. We implement a Markov chain Monte Carlo algorithm to conduct Bayesian inference and illustrate the proposed approach with data on COVID-19 from 20 European countries. The approach shows good performance on simulated data and produces posterior predictions that show a good fit to reported cases, deaths, hospital, and intensive care occupancy.</p>\",\"PeriodicalId\":55360,\"journal\":{\"name\":\"Biometrical Journal\",\"volume\":\"66 1\",\"pages\":\"\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2024-01-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/bimj.202200341\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biometrical Journal\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/bimj.202200341\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICAL & COMPUTATIONAL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biometrical Journal","FirstCategoryId":"99","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/bimj.202200341","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICAL & COMPUTATIONAL BIOLOGY","Score":null,"Total":0}
A Bayesian hierarchical approach to account for evidence and uncertainty in the modeling of infectious diseases: An application to COVID-19
Infectious disease models can serve as critical tools to predict the development of cases and associated healthcare demand and to determine the set of nonpharmaceutical interventions (NPIs) that is most effective in slowing the spread of an infectious agent. Current approaches to estimate NPI effects typically focus on relatively short time periods and either on the number of reported cases, deaths, intensive care occupancy, or hospital occupancy as a single indicator of disease transmission. In this work, we propose a Bayesian hierarchical model that integrates multiple outcomes and complementary sources of information in the estimation of the true and unknown number of infections while accounting for time-varying underreporting and weekday-specific delays in reported cases and deaths, allowing us to estimate the number of infections on a daily basis rather than having to smooth the data. To address dynamic changes occurring over long periods of time, we account for the spread of new variants, seasonality, and time-varying differences in host susceptibility. We implement a Markov chain Monte Carlo algorithm to conduct Bayesian inference and illustrate the proposed approach with data on COVID-19 from 20 European countries. The approach shows good performance on simulated data and produces posterior predictions that show a good fit to reported cases, deaths, hospital, and intensive care occupancy.
期刊介绍:
Biometrical Journal publishes papers on statistical methods and their applications in life sciences including medicine, environmental sciences and agriculture. Methodological developments should be motivated by an interesting and relevant problem from these areas. Ideally the manuscript should include a description of the problem and a section detailing the application of the new methodology to the problem. Case studies, review articles and letters to the editors are also welcome. Papers containing only extensive mathematical theory are not suitable for publication in Biometrical Journal.