Judith Jazmin Bernal-Gallardo, Karla L González-Aguilera, Stefan de Folter
{"title":"EXPANSIN15 参与拟南芥花和果实的发育。","authors":"Judith Jazmin Bernal-Gallardo, Karla L González-Aguilera, Stefan de Folter","doi":"10.1007/s00497-023-00493-4","DOIUrl":null,"url":null,"abstract":"<p><strong>Key message: </strong>EXPANSIN15 is involved in petal cell morphology and size, the fusion of the medial tissues in the gynoecium and expansion of fruit valve cells. It genetically interacts with SPATULA and FRUITFULL. Cell expansion is fundamental for the formation of plant tissues and organs, contributing to their final shape and size during development. To better understand this process in flower and fruit development, we have studied the EXPANSIN15 (EXPA15) gene, which showed expression in petals and in the gynoecium. By analyzing expa15 mutant alleles, we found that EXPA15 is involved in petal shape and size determination, by affecting cell morphology and number. EXPA15 also has a function in fruit size, by affecting cell size and number. Furthermore, EXPA15 promotes fusion of the medial tissues in the gynoecium. In addition, we observed genetic interactions with the transcription factors SPATULA (SPT) and FRUITFULL (FUL) in gynoecium medial tissue fusion, style and stigma development and fruit development in Arabidopsis. These findings contribute to the importance of EXPANSINS in floral and fruit development in Arabidopsis.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11180156/pdf/","citationCount":"0","resultStr":"{\"title\":\"EXPANSIN15 is involved in flower and fruit development in Arabidopsis.\",\"authors\":\"Judith Jazmin Bernal-Gallardo, Karla L González-Aguilera, Stefan de Folter\",\"doi\":\"10.1007/s00497-023-00493-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Key message: </strong>EXPANSIN15 is involved in petal cell morphology and size, the fusion of the medial tissues in the gynoecium and expansion of fruit valve cells. It genetically interacts with SPATULA and FRUITFULL. Cell expansion is fundamental for the formation of plant tissues and organs, contributing to their final shape and size during development. To better understand this process in flower and fruit development, we have studied the EXPANSIN15 (EXPA15) gene, which showed expression in petals and in the gynoecium. By analyzing expa15 mutant alleles, we found that EXPA15 is involved in petal shape and size determination, by affecting cell morphology and number. EXPA15 also has a function in fruit size, by affecting cell size and number. Furthermore, EXPA15 promotes fusion of the medial tissues in the gynoecium. In addition, we observed genetic interactions with the transcription factors SPATULA (SPT) and FRUITFULL (FUL) in gynoecium medial tissue fusion, style and stigma development and fruit development in Arabidopsis. These findings contribute to the importance of EXPANSINS in floral and fruit development in Arabidopsis.</p>\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11180156/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1007/s00497-023-00493-4\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/1/29 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s00497-023-00493-4","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/29 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
EXPANSIN15 is involved in flower and fruit development in Arabidopsis.
Key message: EXPANSIN15 is involved in petal cell morphology and size, the fusion of the medial tissues in the gynoecium and expansion of fruit valve cells. It genetically interacts with SPATULA and FRUITFULL. Cell expansion is fundamental for the formation of plant tissues and organs, contributing to their final shape and size during development. To better understand this process in flower and fruit development, we have studied the EXPANSIN15 (EXPA15) gene, which showed expression in petals and in the gynoecium. By analyzing expa15 mutant alleles, we found that EXPA15 is involved in petal shape and size determination, by affecting cell morphology and number. EXPA15 also has a function in fruit size, by affecting cell size and number. Furthermore, EXPA15 promotes fusion of the medial tissues in the gynoecium. In addition, we observed genetic interactions with the transcription factors SPATULA (SPT) and FRUITFULL (FUL) in gynoecium medial tissue fusion, style and stigma development and fruit development in Arabidopsis. These findings contribute to the importance of EXPANSINS in floral and fruit development in Arabidopsis.