肾小管纤毛细胞发育的尾巴:斑马鱼功能性组织屏障模式化的启示。

IF 3.6 Q2 MEDICINE, RESEARCH & EXPERIMENTAL
Tissue Barriers Pub Date : 2024-10-01 Epub Date: 2024-01-28 DOI:10.1080/21688370.2024.2309025
Sophia Baker, Thanh Khoa Nguyen, Rebecca A Wingert
{"title":"肾小管纤毛细胞发育的尾巴:斑马鱼功能性组织屏障模式化的启示。","authors":"Sophia Baker, Thanh Khoa Nguyen, Rebecca A Wingert","doi":"10.1080/21688370.2024.2309025","DOIUrl":null,"url":null,"abstract":"<p><p>Cilia are hair-like structures found on the surface of nearly all vertebrate cell types where they have central roles in regulating development and orchestrating physiological events. There is growing interest in understanding the mechanisms of ciliogenesis due to the profound consequences that follow from the absence of proper ciliary function, which include diseases that affect the renal, respiratory, reproductive, nervous, visual, and digestive systems, among others. Now, a recent report has discerned new roles for the transcription factor <i>estrogen-related receptor gamma a</i> (<i>esrrγa)</i> in ciliated cell ontogeny within the embryonic zebrafish kidney and other tissues. Further, the team of researchers discovered that genetic ablation of murine homolog ERRγ in adult kidney epithelial cells led to shortened cilia, which precedes cystogenesis. These intriguing findings expand our fundamental understanding of the pathological basis of cilia defects, which is relevant for identifying future therapeutic targets for ciliopathies.</p>","PeriodicalId":23469,"journal":{"name":"Tissue Barriers","volume":" ","pages":"2309025"},"PeriodicalIF":3.6000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11583578/pdf/","citationCount":"0","resultStr":"{\"title\":\"Tails of nephron ciliated cell development: insights on patterning a functional tissue barrier from the zebrafish.\",\"authors\":\"Sophia Baker, Thanh Khoa Nguyen, Rebecca A Wingert\",\"doi\":\"10.1080/21688370.2024.2309025\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Cilia are hair-like structures found on the surface of nearly all vertebrate cell types where they have central roles in regulating development and orchestrating physiological events. There is growing interest in understanding the mechanisms of ciliogenesis due to the profound consequences that follow from the absence of proper ciliary function, which include diseases that affect the renal, respiratory, reproductive, nervous, visual, and digestive systems, among others. Now, a recent report has discerned new roles for the transcription factor <i>estrogen-related receptor gamma a</i> (<i>esrrγa)</i> in ciliated cell ontogeny within the embryonic zebrafish kidney and other tissues. Further, the team of researchers discovered that genetic ablation of murine homolog ERRγ in adult kidney epithelial cells led to shortened cilia, which precedes cystogenesis. These intriguing findings expand our fundamental understanding of the pathological basis of cilia defects, which is relevant for identifying future therapeutic targets for ciliopathies.</p>\",\"PeriodicalId\":23469,\"journal\":{\"name\":\"Tissue Barriers\",\"volume\":\" \",\"pages\":\"2309025\"},\"PeriodicalIF\":3.6000,\"publicationDate\":\"2024-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11583578/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Tissue Barriers\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/21688370.2024.2309025\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/1/28 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"MEDICINE, RESEARCH & EXPERIMENTAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Tissue Barriers","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/21688370.2024.2309025","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/28 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
引用次数: 0

摘要

纤毛是几乎所有脊椎动物细胞类型表面的毛发状结构,在调节发育和协调生理事件方面发挥着核心作用。由于缺乏适当的纤毛功能会产生深远的后果,包括影响肾脏、呼吸、生殖、神经、视觉和消化系统等的疾病,人们对了解纤毛生成机制的兴趣与日俱增。现在,一份最新报告发现了转录因子雌激素相关受体γa(esrrγa)在胚胎斑马鱼肾脏和其他组织的纤毛细胞本体发育过程中的新作用。此外,研究小组还发现,在成体肾脏上皮细胞中对小鼠同源物ERRγ进行基因消减会导致纤毛缩短,而纤毛缩短发生在囊肿形成之前。这些引人入胜的发现拓展了我们对纤毛缺陷病理基础的基本认识,对确定未来纤毛疾病的治疗靶点具有重要意义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Tails of nephron ciliated cell development: insights on patterning a functional tissue barrier from the zebrafish.

Cilia are hair-like structures found on the surface of nearly all vertebrate cell types where they have central roles in regulating development and orchestrating physiological events. There is growing interest in understanding the mechanisms of ciliogenesis due to the profound consequences that follow from the absence of proper ciliary function, which include diseases that affect the renal, respiratory, reproductive, nervous, visual, and digestive systems, among others. Now, a recent report has discerned new roles for the transcription factor estrogen-related receptor gamma a (esrrγa) in ciliated cell ontogeny within the embryonic zebrafish kidney and other tissues. Further, the team of researchers discovered that genetic ablation of murine homolog ERRγ in adult kidney epithelial cells led to shortened cilia, which precedes cystogenesis. These intriguing findings expand our fundamental understanding of the pathological basis of cilia defects, which is relevant for identifying future therapeutic targets for ciliopathies.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Tissue Barriers
Tissue Barriers MEDICINE, RESEARCH & EXPERIMENTAL-
CiteScore
6.60
自引率
6.50%
发文量
25
期刊介绍: Tissue Barriers is the first international interdisciplinary journal that focuses on the architecture, biological roles and regulation of tissue barriers and intercellular junctions. We publish high quality peer-reviewed articles that cover a wide range of topics including structure and functions of the diverse and complex tissue barriers that occur across tissue and cell types, including the molecular composition and dynamics of polarized cell junctions and cell-cell interactions during normal homeostasis, injury and disease state. Tissue barrier formation in regenerative medicine and restoration of tissue and organ function is also of interest. Tissue Barriers publishes several categories of articles including: Original Research Papers, Short Communications, Technical Papers, Reviews, Perspectives and Commentaries, Hypothesis and Meeting Reports. Reviews and Perspectives/Commentaries will typically be invited. We also anticipate to publish special issues that are devoted to rapidly developing or controversial areas of research. Suggestions for topics are welcome. Tissue Barriers objectives: Promote interdisciplinary awareness and collaboration between researchers working with epithelial, epidermal and endothelial barriers and to build a broad and cohesive worldwide community of scientists interesting in this exciting field. Comprehend the enormous complexity of tissue barriers and map cross-talks and interactions between their different cellular and non-cellular components. Highlight the roles of tissue barrier dysfunctions in human diseases. Promote understanding and strategies for restoration of tissue barrier formation and function in regenerative medicine. Accelerate a search for pharmacological enhancers of tissue barriers as potential therapeutic agents. Understand and optimize drug delivery across epithelial and endothelial barriers.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信