蛙足甲虫 Sagra femorata 的自锁机制。

IF 2.9 1区 农林科学 Q1 ENTOMOLOGY
Insect Science Pub Date : 2024-12-01 Epub Date: 2024-01-28 DOI:10.1111/1744-7917.13323
Le Zong, Zonghui Sun, Jieliang Zhao, Zhengzhong Huang, Xiaokun Liu, Lei Jiang, Congqiao Li, Jacob Mulwa Muinde, Jianing Wu, Xiaolong Wang, Hongbin Liang, Haoyu Liu, Yuxia Yang, Siqin Ge
{"title":"蛙足甲虫 Sagra femorata 的自锁机制。","authors":"Le Zong, Zonghui Sun, Jieliang Zhao, Zhengzhong Huang, Xiaokun Liu, Lei Jiang, Congqiao Li, Jacob Mulwa Muinde, Jianing Wu, Xiaolong Wang, Hongbin Liang, Haoyu Liu, Yuxia Yang, Siqin Ge","doi":"10.1111/1744-7917.13323","DOIUrl":null,"url":null,"abstract":"<p><p>Insect legs play a crucial role in various modes of locomotion, including walking, jumping, swimming, and other forms of movement. The flexibility of their leg joints is critical in enabling various modes of locomotion. The frog-legged leaf beetle Sagra femorata possesses remarkably enlarged hind legs, which are considered to be a critical adaptation that enables the species to withstand external pressures. When confronted with external threats, S. femorata initiates a stress response by rapidly rotating its hind legs backward and upward to a specific angle, thereby potentially intimidating potential assailants. Based on video analysis, we identified 4 distinct phases of the hind leg rotation process in S. femorata, which were determined by the range of rotation angles (0°-168.77°). Utilizing micro-computed tomography (micro-CT) technology, we performed a 3-dimensional (3D) reconstruction and conducted relative positioning and volumetric analysis of the metacoxa and metatrochanter of S. femorata. Our analysis revealed that the metacoxa-trochanter joint is a \"screw-nut\" structure connected by 4 muscles, which regulate the rotation of the legs. Further testing using a 3D-printed model of the metacoxa-trochanter joint demonstrated its possession of a self-locking mechanism capable of securing the legs in specific positions to prevent excessive rotation and dislocation. It can be envisioned that this self-locking mechanism holds potential for application in bio-inspired robotics.</p>","PeriodicalId":13618,"journal":{"name":"Insect Science","volume":" ","pages":"1864-1875"},"PeriodicalIF":2.9000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A self-locking mechanism of the frog-legged beetle Sagra femorata.\",\"authors\":\"Le Zong, Zonghui Sun, Jieliang Zhao, Zhengzhong Huang, Xiaokun Liu, Lei Jiang, Congqiao Li, Jacob Mulwa Muinde, Jianing Wu, Xiaolong Wang, Hongbin Liang, Haoyu Liu, Yuxia Yang, Siqin Ge\",\"doi\":\"10.1111/1744-7917.13323\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Insect legs play a crucial role in various modes of locomotion, including walking, jumping, swimming, and other forms of movement. The flexibility of their leg joints is critical in enabling various modes of locomotion. The frog-legged leaf beetle Sagra femorata possesses remarkably enlarged hind legs, which are considered to be a critical adaptation that enables the species to withstand external pressures. When confronted with external threats, S. femorata initiates a stress response by rapidly rotating its hind legs backward and upward to a specific angle, thereby potentially intimidating potential assailants. Based on video analysis, we identified 4 distinct phases of the hind leg rotation process in S. femorata, which were determined by the range of rotation angles (0°-168.77°). Utilizing micro-computed tomography (micro-CT) technology, we performed a 3-dimensional (3D) reconstruction and conducted relative positioning and volumetric analysis of the metacoxa and metatrochanter of S. femorata. Our analysis revealed that the metacoxa-trochanter joint is a \\\"screw-nut\\\" structure connected by 4 muscles, which regulate the rotation of the legs. Further testing using a 3D-printed model of the metacoxa-trochanter joint demonstrated its possession of a self-locking mechanism capable of securing the legs in specific positions to prevent excessive rotation and dislocation. It can be envisioned that this self-locking mechanism holds potential for application in bio-inspired robotics.</p>\",\"PeriodicalId\":13618,\"journal\":{\"name\":\"Insect Science\",\"volume\":\" \",\"pages\":\"1864-1875\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2024-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Insect Science\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://doi.org/10.1111/1744-7917.13323\",\"RegionNum\":1,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/1/28 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"ENTOMOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Insect Science","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1111/1744-7917.13323","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/28 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"ENTOMOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

昆虫的腿在各种运动模式中发挥着关键作用,包括行走、跳跃、游泳和其他形式的运动。它们腿关节的灵活性对于实现各种运动方式至关重要。蛙腿叶甲虫(Sagra femorata)拥有明显增大的后腿,这被认为是该物种能够抵御外部压力的关键适应能力。当面临外来威胁时,大翅叶甲虫会启动应激反应,迅速将后腿向后上方旋转至特定角度,从而对潜在的攻击者构成潜在威胁。根据视频分析,我们确定了股翅蛙后腿旋转过程的 4 个不同阶段,这些阶段由旋转角度的范围(0°-168.77°)决定。利用微型计算机断层扫描(micro-CT)技术,我们进行了三维(3D)重建,并对股骨头的跖骨和跖骨进行了相对定位和体积分析。我们的分析表明,掌骨-转子关节是一个 "螺丝螺母 "结构,由 4 块肌肉连接,这些肌肉调节腿部的旋转。使用三维打印的掌跗关节模型进行的进一步测试表明,掌跗关节具有自锁机制,能够将腿部固定在特定位置,防止过度旋转和脱位。可以预见,这种自锁机制有望应用于生物启发机器人技术。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

A self-locking mechanism of the frog-legged beetle Sagra femorata.

A self-locking mechanism of the frog-legged beetle Sagra femorata.

Insect legs play a crucial role in various modes of locomotion, including walking, jumping, swimming, and other forms of movement. The flexibility of their leg joints is critical in enabling various modes of locomotion. The frog-legged leaf beetle Sagra femorata possesses remarkably enlarged hind legs, which are considered to be a critical adaptation that enables the species to withstand external pressures. When confronted with external threats, S. femorata initiates a stress response by rapidly rotating its hind legs backward and upward to a specific angle, thereby potentially intimidating potential assailants. Based on video analysis, we identified 4 distinct phases of the hind leg rotation process in S. femorata, which were determined by the range of rotation angles (0°-168.77°). Utilizing micro-computed tomography (micro-CT) technology, we performed a 3-dimensional (3D) reconstruction and conducted relative positioning and volumetric analysis of the metacoxa and metatrochanter of S. femorata. Our analysis revealed that the metacoxa-trochanter joint is a "screw-nut" structure connected by 4 muscles, which regulate the rotation of the legs. Further testing using a 3D-printed model of the metacoxa-trochanter joint demonstrated its possession of a self-locking mechanism capable of securing the legs in specific positions to prevent excessive rotation and dislocation. It can be envisioned that this self-locking mechanism holds potential for application in bio-inspired robotics.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Insect Science
Insect Science 生物-昆虫学
CiteScore
7.80
自引率
5.00%
发文量
1379
审稿时长
6.0 months
期刊介绍: Insect Science is an English-language journal, which publishes original research articles dealing with all fields of research in into insects and other terrestrial arthropods. Papers in any of the following fields will be considered: ecology, behavior, biogeography, physiology, biochemistry, sociobiology, phylogeny, pest management, and exotic incursions. The emphasis of the journal is on the adaptation and evolutionary biology of insects from the molecular to the ecosystem level. Reviews, mini reviews and letters to the editor, book reviews, and information about academic activities of the society are also published.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信