{"title":"缺硼会减少铁的积累,增加铁斑块中的镓,从而降低暴露于镓的水稻秧苗的根系活性。","authors":"Wei-Lin Ren, Cheng-Zhi Li, Abid Ullah, Xiao-Zhang Yu","doi":"10.1007/s10646-024-02731-5","DOIUrl":null,"url":null,"abstract":"<p><p>Gallium (Ga) is an emerging chemical pollutant chiefly associated with high-tech industries. Boron (B) alleviates the negative effects of toxic elements on plant growth. Thereby, the effects of B fertilization on Ga toxicity in rice seedlings was studied to clarify the role of iron plaque in the distribution of Ga, Fe, and B in Ga-treated rice seedlings in the presence or absence of B. Gallium exposure significantly reduced the biomass of rice seedlings. Boron deficiency induced a significant change in the distribution of B in Ga-treated rice seedlings compared with \"Ga+B\" treatments. Accumulation of Ga in roots, dithionite-citrate-bicarbonate (DCB) extracts, and shoots showed a dose-dependent manner from both +B and -B rice seedlings. Boron nutrition levels affect the distribution of Fe in roots, DCB extracts, and shoots, in which DCB-extractable Fe was significantly decreased from \"Ga-B\" treatments compared with \"Ga+B\" treatments. Root activity was significantly decreased in both Ga-exposed rice seedlings; however, B-deficient seedlings showed a severe reduction than +B rice seedlings. These results reveal that Fe plaque might be a temporary sink for B accumulation when plants are grown with proper B, wherein the re-utilization of DCB-extractable B stored in Fe plaque is mandatory for plant growth under B deficiency. Correlation analysis revealed that B deficiency decreased the root activity of Ga-exposed rice seedlings by reducing DCB-extractable Fe and increasing DCB-extractable Ga in Fe plaque. This study enhances our understanding of how B nutritional levels affect Ga toxicity in rice plants.</p>","PeriodicalId":11497,"journal":{"name":"Ecotoxicology","volume":" ","pages":"142-150"},"PeriodicalIF":2.4000,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Boron deficiency decreased the root activity of Ga-exposed rice seedlings by reducing iron accumulation and increasing Ga in iron plaque.\",\"authors\":\"Wei-Lin Ren, Cheng-Zhi Li, Abid Ullah, Xiao-Zhang Yu\",\"doi\":\"10.1007/s10646-024-02731-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Gallium (Ga) is an emerging chemical pollutant chiefly associated with high-tech industries. Boron (B) alleviates the negative effects of toxic elements on plant growth. Thereby, the effects of B fertilization on Ga toxicity in rice seedlings was studied to clarify the role of iron plaque in the distribution of Ga, Fe, and B in Ga-treated rice seedlings in the presence or absence of B. Gallium exposure significantly reduced the biomass of rice seedlings. Boron deficiency induced a significant change in the distribution of B in Ga-treated rice seedlings compared with \\\"Ga+B\\\" treatments. Accumulation of Ga in roots, dithionite-citrate-bicarbonate (DCB) extracts, and shoots showed a dose-dependent manner from both +B and -B rice seedlings. Boron nutrition levels affect the distribution of Fe in roots, DCB extracts, and shoots, in which DCB-extractable Fe was significantly decreased from \\\"Ga-B\\\" treatments compared with \\\"Ga+B\\\" treatments. Root activity was significantly decreased in both Ga-exposed rice seedlings; however, B-deficient seedlings showed a severe reduction than +B rice seedlings. These results reveal that Fe plaque might be a temporary sink for B accumulation when plants are grown with proper B, wherein the re-utilization of DCB-extractable B stored in Fe plaque is mandatory for plant growth under B deficiency. Correlation analysis revealed that B deficiency decreased the root activity of Ga-exposed rice seedlings by reducing DCB-extractable Fe and increasing DCB-extractable Ga in Fe plaque. This study enhances our understanding of how B nutritional levels affect Ga toxicity in rice plants.</p>\",\"PeriodicalId\":11497,\"journal\":{\"name\":\"Ecotoxicology\",\"volume\":\" \",\"pages\":\"142-150\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2024-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Ecotoxicology\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://doi.org/10.1007/s10646-024-02731-5\",\"RegionNum\":4,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/1/28 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"ECOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ecotoxicology","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1007/s10646-024-02731-5","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/28 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"ECOLOGY","Score":null,"Total":0}
Boron deficiency decreased the root activity of Ga-exposed rice seedlings by reducing iron accumulation and increasing Ga in iron plaque.
Gallium (Ga) is an emerging chemical pollutant chiefly associated with high-tech industries. Boron (B) alleviates the negative effects of toxic elements on plant growth. Thereby, the effects of B fertilization on Ga toxicity in rice seedlings was studied to clarify the role of iron plaque in the distribution of Ga, Fe, and B in Ga-treated rice seedlings in the presence or absence of B. Gallium exposure significantly reduced the biomass of rice seedlings. Boron deficiency induced a significant change in the distribution of B in Ga-treated rice seedlings compared with "Ga+B" treatments. Accumulation of Ga in roots, dithionite-citrate-bicarbonate (DCB) extracts, and shoots showed a dose-dependent manner from both +B and -B rice seedlings. Boron nutrition levels affect the distribution of Fe in roots, DCB extracts, and shoots, in which DCB-extractable Fe was significantly decreased from "Ga-B" treatments compared with "Ga+B" treatments. Root activity was significantly decreased in both Ga-exposed rice seedlings; however, B-deficient seedlings showed a severe reduction than +B rice seedlings. These results reveal that Fe plaque might be a temporary sink for B accumulation when plants are grown with proper B, wherein the re-utilization of DCB-extractable B stored in Fe plaque is mandatory for plant growth under B deficiency. Correlation analysis revealed that B deficiency decreased the root activity of Ga-exposed rice seedlings by reducing DCB-extractable Fe and increasing DCB-extractable Ga in Fe plaque. This study enhances our understanding of how B nutritional levels affect Ga toxicity in rice plants.
期刊介绍:
Ecotoxicology is an international journal devoted to the publication of fundamental research on the effects of toxic chemicals on populations, communities and terrestrial, freshwater and marine ecosystems. It aims to elucidate mechanisms and processes whereby chemicals exert their effects on ecosystems and the impact caused at the population or community level. The journal is not biased with respect to taxon or biome, and papers that indicate possible new approaches to regulation and control of toxic chemicals and those aiding in formulating ways of conserving threatened species are particularly welcome. Studies on individuals should demonstrate linkage to population effects in clear and quantitative ways. Laboratory studies must show a clear linkage to specific field situations. The journal includes not only original research papers but technical notes and review articles, both invited and submitted. A strong, broadly based editorial board ensures as wide an international coverage as possible.