Dongyan Wang, Min Wang, Zhenqi Xu, Ying Hu, Jiwen Zhong, Taizhuo Ma
{"title":"合成富含氧空位的 CuO 分层纳米片,用于过一硫酸盐活化降解对硝基苯酚及其机理","authors":"Dongyan Wang, Min Wang, Zhenqi Xu, Ying Hu, Jiwen Zhong, Taizhuo Ma","doi":"10.1016/j.seppur.2024.126262","DOIUrl":null,"url":null,"abstract":"<p>In this work, hierarchical copper oxide (CuO) nanosheet with rich oxygen vacancies was prepared with a facile biotemplates derivatization method. Results show that the as-prepared optimum CuO-II exhibited excellent catalytic performance for peroxymonosulfate (PMS) activation mainly benefiting from large specific surface area and electron transfer efficiency, abundant Cu<sup>+</sup> and oxygen vacancies in catalyst. Almost 100 % of P-nitrophenol (PNP) can be degrade within 10 min by CuO-II activating PMS process. The electron paramagnetic resonance (EPR) spectroscopy, reactive species quenching tests and density functional theory (DFT) calculation results revealed that Cu(III)-mediated electron transfer and sulfate radicals were identified as the dominantly responsible for PNP degradation. Meanwhile, CuO-II/PMS system can degrade PNP in a wide range of pH (pH 3 ∼ 10) and with inorganic anions and natural organic matter presence. In addition, CuO-II catalyst has good stability and reusability and performed well toward PNP degradation in the continuous operation. This work not only obtained a facile preparation strategy for obtaining CuO catalyst with excellent catalytic performance, but also gave a new idea for studying the mechanism of CuO activating PMS.</p>","PeriodicalId":427,"journal":{"name":"Separation and Purification Technology","volume":"62 1","pages":""},"PeriodicalIF":9.0000,"publicationDate":"2024-01-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Synthesis oxygen vacancies enriched CuO hierarchical nanosheets for peroxymonosulfate activation toward P-nitrophenol degradation and mechanism\",\"authors\":\"Dongyan Wang, Min Wang, Zhenqi Xu, Ying Hu, Jiwen Zhong, Taizhuo Ma\",\"doi\":\"10.1016/j.seppur.2024.126262\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In this work, hierarchical copper oxide (CuO) nanosheet with rich oxygen vacancies was prepared with a facile biotemplates derivatization method. Results show that the as-prepared optimum CuO-II exhibited excellent catalytic performance for peroxymonosulfate (PMS) activation mainly benefiting from large specific surface area and electron transfer efficiency, abundant Cu<sup>+</sup> and oxygen vacancies in catalyst. Almost 100 % of P-nitrophenol (PNP) can be degrade within 10 min by CuO-II activating PMS process. The electron paramagnetic resonance (EPR) spectroscopy, reactive species quenching tests and density functional theory (DFT) calculation results revealed that Cu(III)-mediated electron transfer and sulfate radicals were identified as the dominantly responsible for PNP degradation. Meanwhile, CuO-II/PMS system can degrade PNP in a wide range of pH (pH 3 ∼ 10) and with inorganic anions and natural organic matter presence. In addition, CuO-II catalyst has good stability and reusability and performed well toward PNP degradation in the continuous operation. This work not only obtained a facile preparation strategy for obtaining CuO catalyst with excellent catalytic performance, but also gave a new idea for studying the mechanism of CuO activating PMS.</p>\",\"PeriodicalId\":427,\"journal\":{\"name\":\"Separation and Purification Technology\",\"volume\":\"62 1\",\"pages\":\"\"},\"PeriodicalIF\":9.0000,\"publicationDate\":\"2024-01-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Separation and Purification Technology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1016/j.seppur.2024.126262\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, CHEMICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Separation and Purification Technology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1016/j.seppur.2024.126262","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
Synthesis oxygen vacancies enriched CuO hierarchical nanosheets for peroxymonosulfate activation toward P-nitrophenol degradation and mechanism
In this work, hierarchical copper oxide (CuO) nanosheet with rich oxygen vacancies was prepared with a facile biotemplates derivatization method. Results show that the as-prepared optimum CuO-II exhibited excellent catalytic performance for peroxymonosulfate (PMS) activation mainly benefiting from large specific surface area and electron transfer efficiency, abundant Cu+ and oxygen vacancies in catalyst. Almost 100 % of P-nitrophenol (PNP) can be degrade within 10 min by CuO-II activating PMS process. The electron paramagnetic resonance (EPR) spectroscopy, reactive species quenching tests and density functional theory (DFT) calculation results revealed that Cu(III)-mediated electron transfer and sulfate radicals were identified as the dominantly responsible for PNP degradation. Meanwhile, CuO-II/PMS system can degrade PNP in a wide range of pH (pH 3 ∼ 10) and with inorganic anions and natural organic matter presence. In addition, CuO-II catalyst has good stability and reusability and performed well toward PNP degradation in the continuous operation. This work not only obtained a facile preparation strategy for obtaining CuO catalyst with excellent catalytic performance, but also gave a new idea for studying the mechanism of CuO activating PMS.
期刊介绍:
Separation and Purification Technology is a premier journal committed to sharing innovative methods for separation and purification in chemical and environmental engineering, encompassing both homogeneous solutions and heterogeneous mixtures. Our scope includes the separation and/or purification of liquids, vapors, and gases, as well as carbon capture and separation techniques. However, it's important to note that methods solely intended for analytical purposes are not within the scope of the journal. Additionally, disciplines such as soil science, polymer science, and metallurgy fall outside the purview of Separation and Purification Technology. Join us in advancing the field of separation and purification methods for sustainable solutions in chemical and environmental engineering.