Mahshid Kharaziha , Thomas Scheibel , Sahar Salehi
{"title":"多功能天然生物粘合剂:从战略性分子设计到先进的生物医学应用","authors":"Mahshid Kharaziha , Thomas Scheibel , Sahar Salehi","doi":"10.1016/j.progpolymsci.2024.101792","DOIUrl":null,"url":null,"abstract":"<div><p>In the last decades, adhesives derived from natural resources (i.e., bioadhesives) have emerged as promising alternative to the standard wound closure devices, including sutures, clips, and strips, owing to relatively easy and rapid application, minimal tissue damage, fast hemostasis, and ability to decrease the risk of infection. Various synthetic and natural materials have been utilized as bioadhesives. These materials find extensive applications in various biomedical fields, ranging from simple wound sealing to controlled drug delivery, tissue regeneration, and noninvasive therapy. Considering the weak underwater adhesion, degradability, and biological performances of synthetic adhesives, naturally derived-based adhesives are more attractive. The first generation of these bioadhesives provided primarily only one function. Moreover, they had issues including long curing time, slow adhesion, high degradation rate, low mechanical properties, and the risk of transferring contamination to the wound. Various chemically and genetically engineered strategies have been applied to advance their multifunctionality. The synergy of bonding chemistry, topography, and mechanics of dissipation in their structure supports the improved adhesion and controlled degradation rate. Various naturally derived bioadhesives are developed that cover subjects from innovative biomaterial synthesis or functionalization and cutting-edge manufacturing processes. However, to fulfill all the criteria of an ideal bioadhesive for clinical applications, more efforts should be devoted to investigating the surface characteristics of target tissues and the long-term relationship between the physiochemical properties of natural polymers and cohesion and adhesion mechanisms, as well as adhesive functionality. This review outlines the recent progress on naturally-derived bioadhesives, including proteins and polysaccharides, focusing on designing approaches based on chemically and genetically engineering strategies, development, and applications. Furthermore, the challenges of current studies are summarized to show future perspectives for developing bioengineered and high-performance naturally-derived bioadhesives for clinical use.</p></div>","PeriodicalId":413,"journal":{"name":"Progress in Polymer Science","volume":"150 ","pages":"Article 101792"},"PeriodicalIF":26.0000,"publicationDate":"2024-01-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0079670024000091/pdfft?md5=a4d05abdf25efab9a2679f8e716a6bf3&pid=1-s2.0-S0079670024000091-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Multifunctional naturally derived bioadhesives: From strategic molecular design toward advanced biomedical applications\",\"authors\":\"Mahshid Kharaziha , Thomas Scheibel , Sahar Salehi\",\"doi\":\"10.1016/j.progpolymsci.2024.101792\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In the last decades, adhesives derived from natural resources (i.e., bioadhesives) have emerged as promising alternative to the standard wound closure devices, including sutures, clips, and strips, owing to relatively easy and rapid application, minimal tissue damage, fast hemostasis, and ability to decrease the risk of infection. Various synthetic and natural materials have been utilized as bioadhesives. These materials find extensive applications in various biomedical fields, ranging from simple wound sealing to controlled drug delivery, tissue regeneration, and noninvasive therapy. Considering the weak underwater adhesion, degradability, and biological performances of synthetic adhesives, naturally derived-based adhesives are more attractive. The first generation of these bioadhesives provided primarily only one function. Moreover, they had issues including long curing time, slow adhesion, high degradation rate, low mechanical properties, and the risk of transferring contamination to the wound. Various chemically and genetically engineered strategies have been applied to advance their multifunctionality. The synergy of bonding chemistry, topography, and mechanics of dissipation in their structure supports the improved adhesion and controlled degradation rate. Various naturally derived bioadhesives are developed that cover subjects from innovative biomaterial synthesis or functionalization and cutting-edge manufacturing processes. However, to fulfill all the criteria of an ideal bioadhesive for clinical applications, more efforts should be devoted to investigating the surface characteristics of target tissues and the long-term relationship between the physiochemical properties of natural polymers and cohesion and adhesion mechanisms, as well as adhesive functionality. This review outlines the recent progress on naturally-derived bioadhesives, including proteins and polysaccharides, focusing on designing approaches based on chemically and genetically engineering strategies, development, and applications. Furthermore, the challenges of current studies are summarized to show future perspectives for developing bioengineered and high-performance naturally-derived bioadhesives for clinical use.</p></div>\",\"PeriodicalId\":413,\"journal\":{\"name\":\"Progress in Polymer Science\",\"volume\":\"150 \",\"pages\":\"Article 101792\"},\"PeriodicalIF\":26.0000,\"publicationDate\":\"2024-01-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0079670024000091/pdfft?md5=a4d05abdf25efab9a2679f8e716a6bf3&pid=1-s2.0-S0079670024000091-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Progress in Polymer Science\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0079670024000091\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"POLYMER SCIENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Progress in Polymer Science","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0079670024000091","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
In the last decades, adhesives derived from natural resources (i.e., bioadhesives) have emerged as promising alternative to the standard wound closure devices, including sutures, clips, and strips, owing to relatively easy and rapid application, minimal tissue damage, fast hemostasis, and ability to decrease the risk of infection. Various synthetic and natural materials have been utilized as bioadhesives. These materials find extensive applications in various biomedical fields, ranging from simple wound sealing to controlled drug delivery, tissue regeneration, and noninvasive therapy. Considering the weak underwater adhesion, degradability, and biological performances of synthetic adhesives, naturally derived-based adhesives are more attractive. The first generation of these bioadhesives provided primarily only one function. Moreover, they had issues including long curing time, slow adhesion, high degradation rate, low mechanical properties, and the risk of transferring contamination to the wound. Various chemically and genetically engineered strategies have been applied to advance their multifunctionality. The synergy of bonding chemistry, topography, and mechanics of dissipation in their structure supports the improved adhesion and controlled degradation rate. Various naturally derived bioadhesives are developed that cover subjects from innovative biomaterial synthesis or functionalization and cutting-edge manufacturing processes. However, to fulfill all the criteria of an ideal bioadhesive for clinical applications, more efforts should be devoted to investigating the surface characteristics of target tissues and the long-term relationship between the physiochemical properties of natural polymers and cohesion and adhesion mechanisms, as well as adhesive functionality. This review outlines the recent progress on naturally-derived bioadhesives, including proteins and polysaccharides, focusing on designing approaches based on chemically and genetically engineering strategies, development, and applications. Furthermore, the challenges of current studies are summarized to show future perspectives for developing bioengineered and high-performance naturally-derived bioadhesives for clinical use.
期刊介绍:
Progress in Polymer Science is a journal that publishes state-of-the-art overview articles in the field of polymer science and engineering. These articles are written by internationally recognized authorities in the discipline, making it a valuable resource for staying up-to-date with the latest developments in this rapidly growing field.
The journal serves as a link between original articles, innovations published in patents, and the most current knowledge of technology. It covers a wide range of topics within the traditional fields of polymer science, including chemistry, physics, and engineering involving polymers. Additionally, it explores interdisciplinary developing fields such as functional and specialty polymers, biomaterials, polymers in drug delivery, polymers in electronic applications, composites, conducting polymers, liquid crystalline materials, and the interphases between polymers and ceramics. The journal also highlights new fabrication techniques that are making significant contributions to the field.
The subject areas covered by Progress in Polymer Science include biomaterials, materials chemistry, organic chemistry, polymers and plastics, surfaces, coatings and films, and nanotechnology. The journal is indexed and abstracted in various databases, including Materials Science Citation Index, Chemical Abstracts, Engineering Index, Current Contents, FIZ Karlsruhe, Scopus, and INSPEC.