{"title":"最小学位删除两端阈值","authors":"Lior Gishboliner, Zhihan Jin, Benny Sudakov","doi":"10.1016/j.jctb.2024.01.003","DOIUrl":null,"url":null,"abstract":"<div><p>The graph removal lemma is a fundamental result in extremal graph theory which says that for every fixed graph <em>H</em> and <span><math><mi>ε</mi><mo>></mo><mn>0</mn></math></span>, if an <em>n</em>-vertex graph <em>G</em> contains <span><math><mi>ε</mi><msup><mrow><mi>n</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span> edge-disjoint copies of <em>H</em> then <em>G</em> contains <span><math><mi>δ</mi><msup><mrow><mi>n</mi></mrow><mrow><mi>v</mi><mo>(</mo><mi>H</mi><mo>)</mo></mrow></msup></math></span> copies of <em>H</em> for some <span><math><mi>δ</mi><mo>=</mo><mi>δ</mi><mo>(</mo><mi>ε</mi><mo>,</mo><mi>H</mi><mo>)</mo><mo>></mo><mn>0</mn></math></span>. The current proofs of the removal lemma give only very weak bounds on <span><math><mi>δ</mi><mo>(</mo><mi>ε</mi><mo>,</mo><mi>H</mi><mo>)</mo></math></span>, and it is also known that <span><math><mi>δ</mi><mo>(</mo><mi>ε</mi><mo>,</mo><mi>H</mi><mo>)</mo></math></span> is not polynomial in <em>ε</em> unless <em>H</em> is bipartite. Recently, Fox and Wigderson initiated the study of minimum degree conditions guaranteeing that <span><math><mi>δ</mi><mo>(</mo><mi>ε</mi><mo>,</mo><mi>H</mi><mo>)</mo></math></span> depends polynomially or linearly on <em>ε</em>. In this paper we answer several questions of Fox and Wigderson on this topic.</p></div>","PeriodicalId":54865,"journal":{"name":"Journal of Combinatorial Theory Series B","volume":"166 ","pages":"Pages 203-221"},"PeriodicalIF":1.2000,"publicationDate":"2024-01-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0095895624000042/pdfft?md5=933ffe8670f6d93ed7560c5af633e7e3&pid=1-s2.0-S0095895624000042-main.pdf","citationCount":"0","resultStr":"{\"title\":\"The minimum degree removal lemma thresholds\",\"authors\":\"Lior Gishboliner, Zhihan Jin, Benny Sudakov\",\"doi\":\"10.1016/j.jctb.2024.01.003\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The graph removal lemma is a fundamental result in extremal graph theory which says that for every fixed graph <em>H</em> and <span><math><mi>ε</mi><mo>></mo><mn>0</mn></math></span>, if an <em>n</em>-vertex graph <em>G</em> contains <span><math><mi>ε</mi><msup><mrow><mi>n</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span> edge-disjoint copies of <em>H</em> then <em>G</em> contains <span><math><mi>δ</mi><msup><mrow><mi>n</mi></mrow><mrow><mi>v</mi><mo>(</mo><mi>H</mi><mo>)</mo></mrow></msup></math></span> copies of <em>H</em> for some <span><math><mi>δ</mi><mo>=</mo><mi>δ</mi><mo>(</mo><mi>ε</mi><mo>,</mo><mi>H</mi><mo>)</mo><mo>></mo><mn>0</mn></math></span>. The current proofs of the removal lemma give only very weak bounds on <span><math><mi>δ</mi><mo>(</mo><mi>ε</mi><mo>,</mo><mi>H</mi><mo>)</mo></math></span>, and it is also known that <span><math><mi>δ</mi><mo>(</mo><mi>ε</mi><mo>,</mo><mi>H</mi><mo>)</mo></math></span> is not polynomial in <em>ε</em> unless <em>H</em> is bipartite. Recently, Fox and Wigderson initiated the study of minimum degree conditions guaranteeing that <span><math><mi>δ</mi><mo>(</mo><mi>ε</mi><mo>,</mo><mi>H</mi><mo>)</mo></math></span> depends polynomially or linearly on <em>ε</em>. In this paper we answer several questions of Fox and Wigderson on this topic.</p></div>\",\"PeriodicalId\":54865,\"journal\":{\"name\":\"Journal of Combinatorial Theory Series B\",\"volume\":\"166 \",\"pages\":\"Pages 203-221\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2024-01-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0095895624000042/pdfft?md5=933ffe8670f6d93ed7560c5af633e7e3&pid=1-s2.0-S0095895624000042-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Combinatorial Theory Series B\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0095895624000042\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Combinatorial Theory Series B","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0095895624000042","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
摘要
图移除阶梯是极值图理论中的一个基本结果,它指出,对于每个固定图 H 和 ε>0,如果一个 n 顶点图 G 包含 H 的 εn2 边相交副本,那么对于某个 δ=δ(ε,H)>0,G 包含 H 的 δnv(H) 副本。目前对移除两难的证明只给出了关于 δ(ε,H) 的非常弱的约束,而且还知道,除非 H 是双分部的,否则 δ(ε,H) 不是 ε 的多项式。最近,Fox 和 Wigderson 开始研究保证 δ(ε,H) 多项式或线性地依赖于 ε 的最小度条件。
The graph removal lemma is a fundamental result in extremal graph theory which says that for every fixed graph H and , if an n-vertex graph G contains edge-disjoint copies of H then G contains copies of H for some . The current proofs of the removal lemma give only very weak bounds on , and it is also known that is not polynomial in ε unless H is bipartite. Recently, Fox and Wigderson initiated the study of minimum degree conditions guaranteeing that depends polynomially or linearly on ε. In this paper we answer several questions of Fox and Wigderson on this topic.
期刊介绍:
The Journal of Combinatorial Theory publishes original mathematical research dealing with theoretical and physical aspects of the study of finite and discrete structures in all branches of science. Series B is concerned primarily with graph theory and matroid theory and is a valuable tool for mathematicians and computer scientists.