ZIF-8 纳米粒子:改进精子介导基因转移中基因传递的重要工具

IF 3.7 3区 生物学 Q1 BIOCHEMICAL RESEARCH METHODS
Marzieh Sameni, Parisa Moradbeigi, Sara Hosseini, Sayyed Mohammad Hossein Ghaderian, Vahid Jajarmi, Amir Hossein Miladipour, Hojat Basati, Maryam Abbasi, Mohammad Salehi
{"title":"ZIF-8 纳米粒子:改进精子介导基因转移中基因传递的重要工具","authors":"Marzieh Sameni, Parisa Moradbeigi, Sara Hosseini, Sayyed Mohammad Hossein Ghaderian, Vahid Jajarmi, Amir Hossein Miladipour, Hojat Basati, Maryam Abbasi, Mohammad Salehi","doi":"10.1186/s12575-024-00229-2","DOIUrl":null,"url":null,"abstract":"<p><p>Metal-organic frameworks (MOFs) are porous materials with unique characteristics that make them well-suited for drug delivery and gene therapy applications. Among the MOFs, zeolitic imidazolate framework-8 (ZIF-8) has emerged as a promising candidate for delivering exogenous DNA into cells. However, the potential of ZIF-8 as a vector for sperm-mediated gene transfer (SMGT) has not yet been thoroughly explored.This investigation aimed to explore the potential of ZIF-8 as a vector for enhancing genetic transfer and transgenesis rates by delivering exogenous DNA into sperm cells. To test this hypothesis, we employed ZIF-8 to deliver a plasmid expressing green fluorescent protein (GFP) into mouse sperm cells and evaluated the efficiency of DNA uptake. Our findings demonstrate that ZIF-8 can efficiently load and deliver exogenous DNA into mouse sperm cells, increasing GFP expression in vitro. These results suggest that ZIF-8 is a valuable tool for enhancing genetic transfer in SMGT, with important implications for developing genetically modified animals for research and commercial purposes. Additionally, our study highlights the potential of ZIF-8 as a novel class of vectors for gene delivery in reproductive biology.Overall, our study provides a foundation for further research into using ZIF-8 and other MOFs as gene delivery systems in reproductive biology and underscores the potential of these materials as promising vectors for gene therapy and drug delivery.</p>","PeriodicalId":8960,"journal":{"name":"Biological Procedures Online","volume":"26 1","pages":"4"},"PeriodicalIF":3.7000,"publicationDate":"2024-01-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10811821/pdf/","citationCount":"0","resultStr":"{\"title\":\"ZIF-8 Nanoparticle: A Valuable Tool for Improving Gene Delivery in Sperm-Mediated Gene Transfer.\",\"authors\":\"Marzieh Sameni, Parisa Moradbeigi, Sara Hosseini, Sayyed Mohammad Hossein Ghaderian, Vahid Jajarmi, Amir Hossein Miladipour, Hojat Basati, Maryam Abbasi, Mohammad Salehi\",\"doi\":\"10.1186/s12575-024-00229-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Metal-organic frameworks (MOFs) are porous materials with unique characteristics that make them well-suited for drug delivery and gene therapy applications. Among the MOFs, zeolitic imidazolate framework-8 (ZIF-8) has emerged as a promising candidate for delivering exogenous DNA into cells. However, the potential of ZIF-8 as a vector for sperm-mediated gene transfer (SMGT) has not yet been thoroughly explored.This investigation aimed to explore the potential of ZIF-8 as a vector for enhancing genetic transfer and transgenesis rates by delivering exogenous DNA into sperm cells. To test this hypothesis, we employed ZIF-8 to deliver a plasmid expressing green fluorescent protein (GFP) into mouse sperm cells and evaluated the efficiency of DNA uptake. Our findings demonstrate that ZIF-8 can efficiently load and deliver exogenous DNA into mouse sperm cells, increasing GFP expression in vitro. These results suggest that ZIF-8 is a valuable tool for enhancing genetic transfer in SMGT, with important implications for developing genetically modified animals for research and commercial purposes. Additionally, our study highlights the potential of ZIF-8 as a novel class of vectors for gene delivery in reproductive biology.Overall, our study provides a foundation for further research into using ZIF-8 and other MOFs as gene delivery systems in reproductive biology and underscores the potential of these materials as promising vectors for gene therapy and drug delivery.</p>\",\"PeriodicalId\":8960,\"journal\":{\"name\":\"Biological Procedures Online\",\"volume\":\"26 1\",\"pages\":\"4\"},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2024-01-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10811821/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biological Procedures Online\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1186/s12575-024-00229-2\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biological Procedures Online","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s12575-024-00229-2","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

摘要

金属有机框架(MOFs)是一种多孔材料,具有独特的特性,非常适合药物输送和基因治疗应用。在 MOFs 中,沸石咪唑啉框架-8(ZIF-8)已成为向细胞输送外源 DNA 的理想候选材料。本研究旨在探索 ZIF-8 作为载体将外源 DNA 送入精子细胞以提高基因转移和转基因率的潜力。为了验证这一假设,我们利用ZIF-8将表达绿色荧光蛋白(GFP)的质粒送入小鼠精子细胞,并评估了DNA的吸收效率。我们的研究结果表明,ZIF-8 能有效地将外源 DNA 植入小鼠精子细胞,从而提高 GFP 在体外的表达。这些结果表明,ZIF-8 是加强 SMGT 基因转移的重要工具,对开发用于研究和商业目的的转基因动物具有重要意义。总之,我们的研究为进一步研究在生殖生物学中使用 ZIF-8 和其他 MOFs 作为基因递送系统奠定了基础,并强调了这些材料作为基因治疗和药物递送载体的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
ZIF-8 Nanoparticle: A Valuable Tool for Improving Gene Delivery in Sperm-Mediated Gene Transfer.

Metal-organic frameworks (MOFs) are porous materials with unique characteristics that make them well-suited for drug delivery and gene therapy applications. Among the MOFs, zeolitic imidazolate framework-8 (ZIF-8) has emerged as a promising candidate for delivering exogenous DNA into cells. However, the potential of ZIF-8 as a vector for sperm-mediated gene transfer (SMGT) has not yet been thoroughly explored.This investigation aimed to explore the potential of ZIF-8 as a vector for enhancing genetic transfer and transgenesis rates by delivering exogenous DNA into sperm cells. To test this hypothesis, we employed ZIF-8 to deliver a plasmid expressing green fluorescent protein (GFP) into mouse sperm cells and evaluated the efficiency of DNA uptake. Our findings demonstrate that ZIF-8 can efficiently load and deliver exogenous DNA into mouse sperm cells, increasing GFP expression in vitro. These results suggest that ZIF-8 is a valuable tool for enhancing genetic transfer in SMGT, with important implications for developing genetically modified animals for research and commercial purposes. Additionally, our study highlights the potential of ZIF-8 as a novel class of vectors for gene delivery in reproductive biology.Overall, our study provides a foundation for further research into using ZIF-8 and other MOFs as gene delivery systems in reproductive biology and underscores the potential of these materials as promising vectors for gene therapy and drug delivery.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Biological Procedures Online
Biological Procedures Online 生物-生化研究方法
CiteScore
10.50
自引率
0.00%
发文量
16
审稿时长
>12 weeks
期刊介绍: iological Procedures Online publishes articles that improve access to techniques and methods in the medical and biological sciences. We are also interested in short but important research discoveries, such as new animal disease models. Topics of interest include, but are not limited to: Reports of new research techniques and applications of existing techniques Technical analyses of research techniques and published reports Validity analyses of research methods and approaches to judging the validity of research reports Application of common research methods Reviews of existing techniques Novel/important product information Biological Procedures Online places emphasis on multidisciplinary approaches that integrate methodologies from medicine, biology, chemistry, imaging, engineering, bioinformatics, computer science, and systems analysis.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信