Vishnu Saseendran, Namiko Yamamoto, Peter J Collins, Aleksandra Radlińska, Sara Mueller, Enrique M Jackson
{"title":"挖掘潜力:利用深度学习从太空分析小规模水泥样品的三维微观结构。","authors":"Vishnu Saseendran, Namiko Yamamoto, Peter J Collins, Aleksandra Radlińska, Sara Mueller, Enrique M Jackson","doi":"10.1038/s41526-024-00349-9","DOIUrl":null,"url":null,"abstract":"<p><p>Due to the prohibitive cost of transporting raw materials into Space, in-situ materials along with cement-like binders are poised to be employed for extraterrestrial construction. A unique methodology for obtaining microstructural topology of cement samples hydrated in microgravity environment at the International Space Station (ISS) is presented here. Distinctive Scanning Electron Microscopy (SEM) micrographs of hardened tri-calcium silicate (C<sub>3</sub>S) samples were used as exemplars in a deep learning-based microstructure reconstruction framework. The proposed method aids in generation of an ensemble of microstructures that is inherently statistical in nature, by utilizing sparse experimental data such as the C<sub>3</sub>S samples hydrated in microgravity. The hydrated space-returned samples had exhibited higher porosity content (~70 %) with the portlandite phase assuming an elongated plate-like morphology. Qualitative assessment of the volumetric slices from the reconstructed volumes showcased similar visual characteristics to that of the target 2D exemplar. Detailed assessment of the reconstructed volumes was carried out using statistical descriptors, and was further compared against micro-CT virtual data. The reconstructed volumes captured the unique microstructural morphology of the hardened C<sub>3</sub>S samples of both space-returned and ground-based samples, and can be directly employed as Representative Volume Element (RVE) to characterize mechanical/transport properties.</p>","PeriodicalId":54263,"journal":{"name":"npj Microgravity","volume":"10 1","pages":"11"},"PeriodicalIF":4.4000,"publicationDate":"2024-01-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11381549/pdf/","citationCount":"0","resultStr":"{\"title\":\"Unlocking the potential: analyzing 3D microstructure of small-scale cement samples from space using deep learning.\",\"authors\":\"Vishnu Saseendran, Namiko Yamamoto, Peter J Collins, Aleksandra Radlińska, Sara Mueller, Enrique M Jackson\",\"doi\":\"10.1038/s41526-024-00349-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Due to the prohibitive cost of transporting raw materials into Space, in-situ materials along with cement-like binders are poised to be employed for extraterrestrial construction. A unique methodology for obtaining microstructural topology of cement samples hydrated in microgravity environment at the International Space Station (ISS) is presented here. Distinctive Scanning Electron Microscopy (SEM) micrographs of hardened tri-calcium silicate (C<sub>3</sub>S) samples were used as exemplars in a deep learning-based microstructure reconstruction framework. The proposed method aids in generation of an ensemble of microstructures that is inherently statistical in nature, by utilizing sparse experimental data such as the C<sub>3</sub>S samples hydrated in microgravity. The hydrated space-returned samples had exhibited higher porosity content (~70 %) with the portlandite phase assuming an elongated plate-like morphology. Qualitative assessment of the volumetric slices from the reconstructed volumes showcased similar visual characteristics to that of the target 2D exemplar. Detailed assessment of the reconstructed volumes was carried out using statistical descriptors, and was further compared against micro-CT virtual data. The reconstructed volumes captured the unique microstructural morphology of the hardened C<sub>3</sub>S samples of both space-returned and ground-based samples, and can be directly employed as Representative Volume Element (RVE) to characterize mechanical/transport properties.</p>\",\"PeriodicalId\":54263,\"journal\":{\"name\":\"npj Microgravity\",\"volume\":\"10 1\",\"pages\":\"11\"},\"PeriodicalIF\":4.4000,\"publicationDate\":\"2024-01-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11381549/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"npj Microgravity\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1038/s41526-024-00349-9\",\"RegionNum\":1,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"npj Microgravity","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1038/s41526-024-00349-9","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
Unlocking the potential: analyzing 3D microstructure of small-scale cement samples from space using deep learning.
Due to the prohibitive cost of transporting raw materials into Space, in-situ materials along with cement-like binders are poised to be employed for extraterrestrial construction. A unique methodology for obtaining microstructural topology of cement samples hydrated in microgravity environment at the International Space Station (ISS) is presented here. Distinctive Scanning Electron Microscopy (SEM) micrographs of hardened tri-calcium silicate (C3S) samples were used as exemplars in a deep learning-based microstructure reconstruction framework. The proposed method aids in generation of an ensemble of microstructures that is inherently statistical in nature, by utilizing sparse experimental data such as the C3S samples hydrated in microgravity. The hydrated space-returned samples had exhibited higher porosity content (~70 %) with the portlandite phase assuming an elongated plate-like morphology. Qualitative assessment of the volumetric slices from the reconstructed volumes showcased similar visual characteristics to that of the target 2D exemplar. Detailed assessment of the reconstructed volumes was carried out using statistical descriptors, and was further compared against micro-CT virtual data. The reconstructed volumes captured the unique microstructural morphology of the hardened C3S samples of both space-returned and ground-based samples, and can be directly employed as Representative Volume Element (RVE) to characterize mechanical/transport properties.
npj MicrogravityPhysics and Astronomy-Physics and Astronomy (miscellaneous)
CiteScore
7.30
自引率
7.80%
发文量
50
审稿时长
9 weeks
期刊介绍:
A new open access, online-only, multidisciplinary research journal, npj Microgravity is dedicated to publishing the most important scientific advances in the life sciences, physical sciences, and engineering fields that are facilitated by spaceflight and analogue platforms.