非典型氨基酸的单锅化学合成。

IF 3.2 4区 生物学 Q2 BIOTECHNOLOGY & APPLIED MICROBIOLOGY
Tsung-Han Chao, Xiangyu Wu, Hans Renata
{"title":"非典型氨基酸的单锅化学合成。","authors":"Tsung-Han Chao, Xiangyu Wu, Hans Renata","doi":"10.1093/jimb/kuae005","DOIUrl":null,"url":null,"abstract":"<p><p>Despite their prevalent use in drug discovery and protein biochemistry, non-canonical amino acids are still challenging to synthesize through purely chemical means. In recent years, biocatalysis has emerged as a transformative paradigm for small-molecule synthesis. One strategy to further empower biocatalysis is to use it in combination with modern chemical reactions and take advantage of the strengths of each method to enable access to challenging structural motifs that were previously unattainable using each method alone. In this Mini-Review, we highlight several recent case studies that feature the synergistic use of chemical and enzymatic transformations in one pot to synthesize novel non-canonical amino acids.</p><p><strong>One-sentence summary: </strong>This Mini-Review highlights several recent case studies that feature the synergistic use of chemical and enzymatic transformations in one pot to synthesize novel non-canonical amino acids.</p>","PeriodicalId":16092,"journal":{"name":"Journal of Industrial Microbiology & Biotechnology","volume":" ","pages":""},"PeriodicalIF":3.2000,"publicationDate":"2024-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10853765/pdf/","citationCount":"0","resultStr":"{\"title\":\"One-pot chemoenzymatic syntheses of non-canonical amino acids.\",\"authors\":\"Tsung-Han Chao, Xiangyu Wu, Hans Renata\",\"doi\":\"10.1093/jimb/kuae005\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Despite their prevalent use in drug discovery and protein biochemistry, non-canonical amino acids are still challenging to synthesize through purely chemical means. In recent years, biocatalysis has emerged as a transformative paradigm for small-molecule synthesis. One strategy to further empower biocatalysis is to use it in combination with modern chemical reactions and take advantage of the strengths of each method to enable access to challenging structural motifs that were previously unattainable using each method alone. In this Mini-Review, we highlight several recent case studies that feature the synergistic use of chemical and enzymatic transformations in one pot to synthesize novel non-canonical amino acids.</p><p><strong>One-sentence summary: </strong>This Mini-Review highlights several recent case studies that feature the synergistic use of chemical and enzymatic transformations in one pot to synthesize novel non-canonical amino acids.</p>\",\"PeriodicalId\":16092,\"journal\":{\"name\":\"Journal of Industrial Microbiology & Biotechnology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2024-01-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10853765/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Industrial Microbiology & Biotechnology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1093/jimb/kuae005\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Industrial Microbiology & Biotechnology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1093/jimb/kuae005","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

尽管非典型氨基酸在药物发现和蛋白质生物化学中的应用十分普遍,但通过纯化学方法合成非典型氨基酸仍然具有挑战性。近年来,生物催化已成为小分子合成的变革性范例。进一步增强生物催化能力的策略之一是将生物催化与现代化学反应相结合,利用每种方法的优势,获得以前无法单独使用每种方法获得的具有挑战性的结构基团。在这篇微型综述中,我们将重点介绍几项最新的案例研究,这些研究的特点是将化学转化与酶转化协同使用,从而合成出新型的非经典氨基酸。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
One-pot chemoenzymatic syntheses of non-canonical amino acids.

Despite their prevalent use in drug discovery and protein biochemistry, non-canonical amino acids are still challenging to synthesize through purely chemical means. In recent years, biocatalysis has emerged as a transformative paradigm for small-molecule synthesis. One strategy to further empower biocatalysis is to use it in combination with modern chemical reactions and take advantage of the strengths of each method to enable access to challenging structural motifs that were previously unattainable using each method alone. In this Mini-Review, we highlight several recent case studies that feature the synergistic use of chemical and enzymatic transformations in one pot to synthesize novel non-canonical amino acids.

One-sentence summary: This Mini-Review highlights several recent case studies that feature the synergistic use of chemical and enzymatic transformations in one pot to synthesize novel non-canonical amino acids.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Industrial Microbiology & Biotechnology
Journal of Industrial Microbiology & Biotechnology 工程技术-生物工程与应用微生物
CiteScore
7.70
自引率
0.00%
发文量
25
审稿时长
3 months
期刊介绍: The Journal of Industrial Microbiology and Biotechnology is an international journal which publishes papers describing original research, short communications, and critical reviews in the fields of biotechnology, fermentation and cell culture, biocatalysis, environmental microbiology, natural products discovery and biosynthesis, marine natural products, metabolic engineering, genomics, bioinformatics, food microbiology, and other areas of applied microbiology
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信