百合花粉萌发过程中细胞器的动态变化和自噬过程

IF 3.4 3区 生物学 Q1 Agricultural and Biological Sciences
Chih-Chung Yen, Chia-Mei Hsu, Pei-Luen Jiang, Guang-Yuh Jauh
{"title":"百合花粉萌发过程中细胞器的动态变化和自噬过程","authors":"Chih-Chung Yen, Chia-Mei Hsu, Pei-Luen Jiang, Guang-Yuh Jauh","doi":"10.1186/s40529-024-00410-6","DOIUrl":null,"url":null,"abstract":"<p><p>Pollen germination is a crucial process in the life cycle of flowering plants, signifying the transition of quiescent pollen grains into active growth. This study delves into the dynamic changes within organelles and the pivotal role of autophagy during lily pollen germination. Initially, mature pollen grains harbor undifferentiated organelles, including amyloplasts, mitochondria, and the Golgi apparatus. However, germination unveils remarkable transformations, such as the redifferentiation of amyloplasts accompanied by starch granule accumulation. We investigate the self-sustained nature of amylogenesis during germination, shedding light on its association with osmotic pressure. Employing BODIPY 493/503 staining, we tracked lipid body distribution throughout pollen germination, both with or without autophagy inhibitors (3-MA, NEM). Typically, lipid bodies undergo polarized movement from pollen grains into elongating pollen tubes, a process crucial for directional growth. Inhibiting autophagy disrupted this essential lipid body redistribution, underscoring the interaction between autophagy and lipid body dynamics. Notably, the presence of tubular endoplasmic reticulum (ER)-like structures associated with developing amyloplasts and lipid bodies implies their participation in autophagy. Starch granules, lipid bodies, and membrane remnants observed within vacuoles further reinforce the involvement of autophagic processes. Among the autophagy inhibitors, particularly BFA, significantly impede germination and growth, thereby affecting Golgi morphology. Immunogold labeling substantiates the pivotal role of the ER in forming autophagosome-like compartments and protein localization. Our proposed speculative model of pollen germination encompasses proplastid differentiation and autophagosome formation. This study advances our understanding of organelle dynamics and autophagy during pollen germination, providing valuable insights into the realm of plant reproductive physiology.</p>","PeriodicalId":9185,"journal":{"name":"Botanical Studies","volume":null,"pages":null},"PeriodicalIF":3.4000,"publicationDate":"2024-01-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10811312/pdf/","citationCount":"0","resultStr":"{\"title\":\"Dynamic organelle changes and autophagic processes in lily pollen germination.\",\"authors\":\"Chih-Chung Yen, Chia-Mei Hsu, Pei-Luen Jiang, Guang-Yuh Jauh\",\"doi\":\"10.1186/s40529-024-00410-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Pollen germination is a crucial process in the life cycle of flowering plants, signifying the transition of quiescent pollen grains into active growth. This study delves into the dynamic changes within organelles and the pivotal role of autophagy during lily pollen germination. Initially, mature pollen grains harbor undifferentiated organelles, including amyloplasts, mitochondria, and the Golgi apparatus. However, germination unveils remarkable transformations, such as the redifferentiation of amyloplasts accompanied by starch granule accumulation. We investigate the self-sustained nature of amylogenesis during germination, shedding light on its association with osmotic pressure. Employing BODIPY 493/503 staining, we tracked lipid body distribution throughout pollen germination, both with or without autophagy inhibitors (3-MA, NEM). Typically, lipid bodies undergo polarized movement from pollen grains into elongating pollen tubes, a process crucial for directional growth. Inhibiting autophagy disrupted this essential lipid body redistribution, underscoring the interaction between autophagy and lipid body dynamics. Notably, the presence of tubular endoplasmic reticulum (ER)-like structures associated with developing amyloplasts and lipid bodies implies their participation in autophagy. Starch granules, lipid bodies, and membrane remnants observed within vacuoles further reinforce the involvement of autophagic processes. Among the autophagy inhibitors, particularly BFA, significantly impede germination and growth, thereby affecting Golgi morphology. Immunogold labeling substantiates the pivotal role of the ER in forming autophagosome-like compartments and protein localization. Our proposed speculative model of pollen germination encompasses proplastid differentiation and autophagosome formation. This study advances our understanding of organelle dynamics and autophagy during pollen germination, providing valuable insights into the realm of plant reproductive physiology.</p>\",\"PeriodicalId\":9185,\"journal\":{\"name\":\"Botanical Studies\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2024-01-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10811312/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Botanical Studies\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1186/s40529-024-00410-6\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Agricultural and Biological Sciences\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Botanical Studies","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s40529-024-00410-6","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Agricultural and Biological Sciences","Score":null,"Total":0}
引用次数: 0

摘要

花粉萌发是开花植物生命周期中的一个关键过程,标志着静止的花粉粒向活跃的生长过渡。本研究深入探讨了百合花粉萌发过程中细胞器的动态变化以及自噬的关键作用。最初,成熟的花粉粒含有未分化的细胞器,包括淀粉体、线粒体和高尔基体。然而,萌发过程中会发生显著的变化,例如淀粉体的再分化伴随着淀粉粒的积累。我们研究了淀粉在萌发过程中的自我维持性质,揭示了它与渗透压的关系。在使用或不使用自噬抑制剂(3-MA、NEM)的情况下,我们利用 BODIPY 493/503 染色法跟踪了整个花粉萌发过程中的脂质体分布。通常情况下,脂质体从花粉粒极化移动到伸长的花粉管中,这一过程对定向生长至关重要。抑制自噬会破坏这种重要的脂质体重新分布,从而强调自噬与脂质体动态之间的相互作用。值得注意的是,与发育中的淀粉体和脂质体相关的管状内质网(ER)样结构的存在意味着它们参与了自噬。在液泡中观察到的淀粉粒、脂质体和膜残余物进一步证实了自噬过程的参与。在自噬抑制剂中,特别是 BFA 会明显阻碍发芽和生长,从而影响高尔基体的形态。免疫金标记证实了ER在形成自噬体和蛋白质定位方面的关键作用。我们提出的花粉萌发推测模型包括原生质体分化和自噬体的形成。这项研究加深了我们对花粉萌发过程中细胞器动力学和自噬的理解,为植物生殖生理领域提供了宝贵的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Dynamic organelle changes and autophagic processes in lily pollen germination.

Pollen germination is a crucial process in the life cycle of flowering plants, signifying the transition of quiescent pollen grains into active growth. This study delves into the dynamic changes within organelles and the pivotal role of autophagy during lily pollen germination. Initially, mature pollen grains harbor undifferentiated organelles, including amyloplasts, mitochondria, and the Golgi apparatus. However, germination unveils remarkable transformations, such as the redifferentiation of amyloplasts accompanied by starch granule accumulation. We investigate the self-sustained nature of amylogenesis during germination, shedding light on its association with osmotic pressure. Employing BODIPY 493/503 staining, we tracked lipid body distribution throughout pollen germination, both with or without autophagy inhibitors (3-MA, NEM). Typically, lipid bodies undergo polarized movement from pollen grains into elongating pollen tubes, a process crucial for directional growth. Inhibiting autophagy disrupted this essential lipid body redistribution, underscoring the interaction between autophagy and lipid body dynamics. Notably, the presence of tubular endoplasmic reticulum (ER)-like structures associated with developing amyloplasts and lipid bodies implies their participation in autophagy. Starch granules, lipid bodies, and membrane remnants observed within vacuoles further reinforce the involvement of autophagic processes. Among the autophagy inhibitors, particularly BFA, significantly impede germination and growth, thereby affecting Golgi morphology. Immunogold labeling substantiates the pivotal role of the ER in forming autophagosome-like compartments and protein localization. Our proposed speculative model of pollen germination encompasses proplastid differentiation and autophagosome formation. This study advances our understanding of organelle dynamics and autophagy during pollen germination, providing valuable insights into the realm of plant reproductive physiology.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Botanical Studies
Botanical Studies 生物-植物科学
CiteScore
5.50
自引率
2.90%
发文量
32
审稿时长
2.4 months
期刊介绍: Botanical Studies is an open access journal that encompasses all aspects of botany, including but not limited to taxonomy, morphology, development, genetics, evolution, reproduction, systematics, and biodiversity of all plant groups, algae, and fungi. The journal is affiliated with the Institute of Plant and Microbial Biology, Academia Sinica, Taiwan.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信