{"title":"水性二氧化钛界面。","authors":"Annabella Selloni","doi":"10.1146/annurev-physchem-090722-015957","DOIUrl":null,"url":null,"abstract":"<p><p>Water-metal oxide interfaces are central to many phenomena and applications, ranging from material corrosion and dissolution to photoelectrochemistry and bioengineering. In particular, the discovery of photocatalytic water splitting on TiO<sub>2</sub> has motivated intensive studies of water-TiO<sub>2</sub> interfaces for decades. So far, a broad understanding of the interaction of water vapor with several TiO<sub>2</sub> surfaces has been obtained. However, much less is known about liquid water-TiO<sub>2</sub> interfaces, which are more relevant to many practical applications. Probing these complex systems at the molecular level is experimentally challenging and is sometimes possible only through computational studies. This review summarizes recent advances in the atomistic understanding, mostly through computational simulations, of the structure and dynamics of interfacial water on TiO<sub>2</sub> surfaces. The main focus is on the nature, molecular or dissociated, of water in direct contact with low-index defect-free crystalline surfaces. The hydroxyls resulting from water dissociation are essential in the photooxidation of water and critically affect the surface chemistry of TiO<sub>2.</sub></p>","PeriodicalId":7967,"journal":{"name":"Annual review of physical chemistry","volume":" ","pages":"47-65"},"PeriodicalIF":11.7000,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Aqueous Titania Interfaces.\",\"authors\":\"Annabella Selloni\",\"doi\":\"10.1146/annurev-physchem-090722-015957\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Water-metal oxide interfaces are central to many phenomena and applications, ranging from material corrosion and dissolution to photoelectrochemistry and bioengineering. In particular, the discovery of photocatalytic water splitting on TiO<sub>2</sub> has motivated intensive studies of water-TiO<sub>2</sub> interfaces for decades. So far, a broad understanding of the interaction of water vapor with several TiO<sub>2</sub> surfaces has been obtained. However, much less is known about liquid water-TiO<sub>2</sub> interfaces, which are more relevant to many practical applications. Probing these complex systems at the molecular level is experimentally challenging and is sometimes possible only through computational studies. This review summarizes recent advances in the atomistic understanding, mostly through computational simulations, of the structure and dynamics of interfacial water on TiO<sub>2</sub> surfaces. The main focus is on the nature, molecular or dissociated, of water in direct contact with low-index defect-free crystalline surfaces. The hydroxyls resulting from water dissociation are essential in the photooxidation of water and critically affect the surface chemistry of TiO<sub>2.</sub></p>\",\"PeriodicalId\":7967,\"journal\":{\"name\":\"Annual review of physical chemistry\",\"volume\":\" \",\"pages\":\"47-65\"},\"PeriodicalIF\":11.7000,\"publicationDate\":\"2024-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annual review of physical chemistry\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1146/annurev-physchem-090722-015957\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/6/14 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annual review of physical chemistry","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1146/annurev-physchem-090722-015957","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/6/14 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
Water-metal oxide interfaces are central to many phenomena and applications, ranging from material corrosion and dissolution to photoelectrochemistry and bioengineering. In particular, the discovery of photocatalytic water splitting on TiO2 has motivated intensive studies of water-TiO2 interfaces for decades. So far, a broad understanding of the interaction of water vapor with several TiO2 surfaces has been obtained. However, much less is known about liquid water-TiO2 interfaces, which are more relevant to many practical applications. Probing these complex systems at the molecular level is experimentally challenging and is sometimes possible only through computational studies. This review summarizes recent advances in the atomistic understanding, mostly through computational simulations, of the structure and dynamics of interfacial water on TiO2 surfaces. The main focus is on the nature, molecular or dissociated, of water in direct contact with low-index defect-free crystalline surfaces. The hydroxyls resulting from water dissociation are essential in the photooxidation of water and critically affect the surface chemistry of TiO2.
期刊介绍:
The Annual Review of Physical Chemistry has been published since 1950 and is a comprehensive resource for significant advancements in the field. It encompasses various sub-disciplines such as biophysical chemistry, chemical kinetics, colloids, electrochemistry, geochemistry and cosmochemistry, chemistry of the atmosphere and climate, laser chemistry and ultrafast processes, the liquid state, magnetic resonance, physical organic chemistry, polymers and macromolecules, and others.