基于超经典平均分配标准的某些分子结构的数值和科学研究

IF 1.3 4区 数学 Q1 MATHEMATICS
A. Rajesh Kannan, Nazek Alessa, K. Loganathan, Balachandra Pattanaik
{"title":"基于超经典平均分配标准的某些分子结构的数值和科学研究","authors":"A. Rajesh Kannan, Nazek Alessa, K. Loganathan, Balachandra Pattanaik","doi":"10.1155/2024/9360076","DOIUrl":null,"url":null,"abstract":"Numbering a graph is a very practical and effective technique in science and engineering. Numerous graph assignment techniques, including distance-based labeling, topological indices, and spectral graph theory, can be used to investigate molecule structures. Consider the graph <span><svg height=\"8.8423pt\" style=\"vertical-align:-0.2064009pt\" version=\"1.1\" viewbox=\"-0.0498162 -8.6359 9.02496 8.8423\" width=\"9.02496pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g transform=\"matrix(.013,0,0,-0.013,0,0)\"></path></g></svg>,</span> with the injection <svg height=\"8.68572pt\" style=\"vertical-align:-0.0498209pt\" version=\"1.1\" viewbox=\"-0.0498162 -8.6359 9.97754 8.68572\" width=\"9.97754pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g transform=\"matrix(.013,0,0,-0.013,0,0)\"></path></g></svg> from the node set to <span><svg height=\"11.5564pt\" style=\"vertical-align:-2.26807pt\" version=\"1.1\" viewbox=\"-0.0498162 -9.28833 13.715 11.5564\" width=\"13.715pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g transform=\"matrix(.013,0,0,-0.013,0,0)\"></path></g><g transform=\"matrix(.013,0,0,-0.013,4.511,0)\"></path></g><g transform=\"matrix(.013,0,0,-0.013,10.751,0)\"></path></g></svg><span></span><svg height=\"11.5564pt\" style=\"vertical-align:-2.26807pt\" version=\"1.1\" viewbox=\"15.8441838 -9.28833 9.204 11.5564\" width=\"9.204pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g transform=\"matrix(.013,0,0,-0.013,15.894,0)\"></path></g><g transform=\"matrix(.013,0,0,-0.013,22.134,0)\"><use xlink:href=\"#g113-45\"></use></g></svg><span></span><svg height=\"11.5564pt\" style=\"vertical-align:-2.26807pt\" version=\"1.1\" viewbox=\"27.227183800000002 -9.28833 18.427 11.5564\" width=\"18.427pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g transform=\"matrix(.013,0,0,-0.013,27.277,0)\"></path></g><g transform=\"matrix(.013,0,0,-0.013,32.42,0)\"><use xlink:href=\"#g113-47\"></use></g><g transform=\"matrix(.013,0,0,-0.013,37.564,0)\"><use xlink:href=\"#g113-47\"></use></g><g transform=\"matrix(.013,0,0,-0.013,42.74,0)\"><use xlink:href=\"#g113-45\"></use></g></svg><span></span><span><svg height=\"11.5564pt\" style=\"vertical-align:-2.26807pt\" version=\"1.1\" viewbox=\"47.8331838 -9.28833 13.089 11.5564\" width=\"13.089pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g transform=\"matrix(.013,0,0,-0.013,47.883,0)\"></path></g><g transform=\"matrix(.013,0,0,-0.013,56.21,0)\"></path></g></svg>,</span></span> where <svg height=\"8.68572pt\" style=\"vertical-align:-0.0498209pt\" version=\"1.1\" viewbox=\"-0.0498162 -8.6359 8.46388 8.68572\" width=\"8.46388pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g transform=\"matrix(.013,0,0,-0.013,0,0)\"><use xlink:href=\"#g113-133\"></use></g></svg> is the sum of the number of nodes and links. Assume that the induced link assignment <svg height=\"10.1524pt\" style=\"vertical-align:-0.04990005pt\" version=\"1.1\" viewbox=\"-0.0498162 -10.1025 16.0566 10.1524\" width=\"16.0566pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g transform=\"matrix(.013,0,0,-0.013,0,0)\"><use xlink:href=\"#g113-153\"></use></g><g transform=\"matrix(.0091,0,0,-0.0091,9.841,-5.741)\"></path></g></svg> is the ceiling function of the average of root square, harmonic, geometric, and arithmetic means of the vertex labels of the end vertices of each edge. If the union of range of <svg height=\"8.68572pt\" style=\"vertical-align:-0.0498209pt\" version=\"1.1\" viewbox=\"-0.0498162 -8.6359 9.97754 8.68572\" width=\"9.97754pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g transform=\"matrix(.013,0,0,-0.013,0,0)\"><use xlink:href=\"#g113-153\"></use></g></svg> of the node set and the range of <svg height=\"8.68572pt\" style=\"vertical-align:-0.0498209pt\" version=\"1.1\" viewbox=\"-0.0498162 -8.6359 9.97754 8.68572\" width=\"9.97754pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g transform=\"matrix(.013,0,0,-0.013,0,0)\"><use xlink:href=\"#g113-153\"></use></g></svg> of the link set is the set <span><svg height=\"11.5564pt\" style=\"vertical-align:-2.26807pt\" version=\"1.1\" viewbox=\"-0.0498162 -9.28833 13.715 11.5564\" width=\"13.715pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g transform=\"matrix(.013,0,0,-0.013,0,0)\"><use xlink:href=\"#g113-124\"></use></g><g transform=\"matrix(.013,0,0,-0.013,4.511,0)\"><use xlink:href=\"#g113-50\"></use></g><g transform=\"matrix(.013,0,0,-0.013,10.751,0)\"><use xlink:href=\"#g113-45\"></use></g></svg><span></span><svg height=\"11.5564pt\" style=\"vertical-align:-2.26807pt\" version=\"1.1\" viewbox=\"15.8441838 -9.28833 9.204 11.5564\" width=\"9.204pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g transform=\"matrix(.013,0,0,-0.013,15.894,0)\"><use xlink:href=\"#g113-51\"></use></g><g transform=\"matrix(.013,0,0,-0.013,22.134,0)\"><use xlink:href=\"#g113-45\"></use></g></svg><span></span><svg height=\"11.5564pt\" style=\"vertical-align:-2.26807pt\" version=\"1.1\" viewbox=\"27.227183800000002 -9.28833 18.427 11.5564\" width=\"18.427pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g transform=\"matrix(.013,0,0,-0.013,27.277,0)\"><use xlink:href=\"#g113-47\"></use></g><g transform=\"matrix(.013,0,0,-0.013,32.42,0)\"><use xlink:href=\"#g113-47\"></use></g><g transform=\"matrix(.013,0,0,-0.013,37.564,0)\"><use xlink:href=\"#g113-47\"></use></g><g transform=\"matrix(.013,0,0,-0.013,42.74,0)\"><use xlink:href=\"#g113-45\"></use></g></svg><span></span><span><svg height=\"11.5564pt\" style=\"vertical-align:-2.26807pt\" version=\"1.1\" viewbox=\"47.8331838 -9.28833 13.089 11.5564\" width=\"13.089pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g transform=\"matrix(.013,0,0,-0.013,47.883,0)\"><use xlink:href=\"#g113-133\"></use></g><g transform=\"matrix(.013,0,0,-0.013,56.21,0)\"><use xlink:href=\"#g113-126\"></use></g></svg>,</span></span> then <svg height=\"8.68572pt\" style=\"vertical-align:-0.0498209pt\" version=\"1.1\" viewbox=\"-0.0498162 -8.6359 9.97754 8.68572\" width=\"9.97754pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g transform=\"matrix(.013,0,0,-0.013,0,0)\"><use xlink:href=\"#g113-153\"></use></g></svg> is called a super classical average assignment (SCAA). This is known as the SCAA criterion. In this study, the graphical structures corresponding to chemical structures based on the SCAA criterion are demonstrated. The graphical depiction of chemical substances was first defined and second, the union of any number of cycles <span><svg height=\"11.927pt\" style=\"vertical-align:-3.291101pt\" version=\"1.1\" viewbox=\"-0.0498162 -8.6359 13.9257 11.927\" width=\"13.9257pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g transform=\"matrix(.013,0,0,-0.013,0,0)\"></path></g><g transform=\"matrix(.0091,0,0,-0.0091,8.619,3.132)\"></path></g></svg>,</span> the tadpole graph, the graph extracted by identifying a line of any two cycles <svg height=\"11.927pt\" style=\"vertical-align:-3.291101pt\" version=\"1.1\" viewbox=\"-0.0498162 -8.6359 16.602 11.927\" width=\"16.602pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g transform=\"matrix(.013,0,0,-0.013,0,0)\"><use xlink:href=\"#g113-68\"></use></g><g transform=\"matrix(.0091,0,0,-0.0091,8.619,3.132)\"></path></g></svg> and <span><svg height=\"11.927pt\" style=\"vertical-align:-3.291101pt\" version=\"1.1\" viewbox=\"-0.0498162 -8.6359 13.9257 11.927\" width=\"13.9257pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g transform=\"matrix(.013,0,0,-0.013,0,0)\"><use xlink:href=\"#g113-68\"></use></g><g transform=\"matrix(.0091,0,0,-0.0091,8.619,3.132)\"><use xlink:href=\"#g50-111\"></use></g></svg>,</span> and the graph extracted by joining any two cycles by a path are all examined in this work.","PeriodicalId":54214,"journal":{"name":"Journal of Mathematics","volume":null,"pages":null},"PeriodicalIF":1.3000,"publicationDate":"2024-01-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Numerical and Scientific Investigation of Some Molecular Structures Based on the Criterion of Super Classical Average Assignments\",\"authors\":\"A. Rajesh Kannan, Nazek Alessa, K. Loganathan, Balachandra Pattanaik\",\"doi\":\"10.1155/2024/9360076\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Numbering a graph is a very practical and effective technique in science and engineering. Numerous graph assignment techniques, including distance-based labeling, topological indices, and spectral graph theory, can be used to investigate molecule structures. Consider the graph <span><svg height=\\\"8.8423pt\\\" style=\\\"vertical-align:-0.2064009pt\\\" version=\\\"1.1\\\" viewbox=\\\"-0.0498162 -8.6359 9.02496 8.8423\\\" width=\\\"9.02496pt\\\" xmlns=\\\"http://www.w3.org/2000/svg\\\" xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\"><g transform=\\\"matrix(.013,0,0,-0.013,0,0)\\\"></path></g></svg>,</span> with the injection <svg height=\\\"8.68572pt\\\" style=\\\"vertical-align:-0.0498209pt\\\" version=\\\"1.1\\\" viewbox=\\\"-0.0498162 -8.6359 9.97754 8.68572\\\" width=\\\"9.97754pt\\\" xmlns=\\\"http://www.w3.org/2000/svg\\\" xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\"><g transform=\\\"matrix(.013,0,0,-0.013,0,0)\\\"></path></g></svg> from the node set to <span><svg height=\\\"11.5564pt\\\" style=\\\"vertical-align:-2.26807pt\\\" version=\\\"1.1\\\" viewbox=\\\"-0.0498162 -9.28833 13.715 11.5564\\\" width=\\\"13.715pt\\\" xmlns=\\\"http://www.w3.org/2000/svg\\\" xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\"><g transform=\\\"matrix(.013,0,0,-0.013,0,0)\\\"></path></g><g transform=\\\"matrix(.013,0,0,-0.013,4.511,0)\\\"></path></g><g transform=\\\"matrix(.013,0,0,-0.013,10.751,0)\\\"></path></g></svg><span></span><svg height=\\\"11.5564pt\\\" style=\\\"vertical-align:-2.26807pt\\\" version=\\\"1.1\\\" viewbox=\\\"15.8441838 -9.28833 9.204 11.5564\\\" width=\\\"9.204pt\\\" xmlns=\\\"http://www.w3.org/2000/svg\\\" xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\"><g transform=\\\"matrix(.013,0,0,-0.013,15.894,0)\\\"></path></g><g transform=\\\"matrix(.013,0,0,-0.013,22.134,0)\\\"><use xlink:href=\\\"#g113-45\\\"></use></g></svg><span></span><svg height=\\\"11.5564pt\\\" style=\\\"vertical-align:-2.26807pt\\\" version=\\\"1.1\\\" viewbox=\\\"27.227183800000002 -9.28833 18.427 11.5564\\\" width=\\\"18.427pt\\\" xmlns=\\\"http://www.w3.org/2000/svg\\\" xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\"><g transform=\\\"matrix(.013,0,0,-0.013,27.277,0)\\\"></path></g><g transform=\\\"matrix(.013,0,0,-0.013,32.42,0)\\\"><use xlink:href=\\\"#g113-47\\\"></use></g><g transform=\\\"matrix(.013,0,0,-0.013,37.564,0)\\\"><use xlink:href=\\\"#g113-47\\\"></use></g><g transform=\\\"matrix(.013,0,0,-0.013,42.74,0)\\\"><use xlink:href=\\\"#g113-45\\\"></use></g></svg><span></span><span><svg height=\\\"11.5564pt\\\" style=\\\"vertical-align:-2.26807pt\\\" version=\\\"1.1\\\" viewbox=\\\"47.8331838 -9.28833 13.089 11.5564\\\" width=\\\"13.089pt\\\" xmlns=\\\"http://www.w3.org/2000/svg\\\" xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\"><g transform=\\\"matrix(.013,0,0,-0.013,47.883,0)\\\"></path></g><g transform=\\\"matrix(.013,0,0,-0.013,56.21,0)\\\"></path></g></svg>,</span></span> where <svg height=\\\"8.68572pt\\\" style=\\\"vertical-align:-0.0498209pt\\\" version=\\\"1.1\\\" viewbox=\\\"-0.0498162 -8.6359 8.46388 8.68572\\\" width=\\\"8.46388pt\\\" xmlns=\\\"http://www.w3.org/2000/svg\\\" xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\"><g transform=\\\"matrix(.013,0,0,-0.013,0,0)\\\"><use xlink:href=\\\"#g113-133\\\"></use></g></svg> is the sum of the number of nodes and links. Assume that the induced link assignment <svg height=\\\"10.1524pt\\\" style=\\\"vertical-align:-0.04990005pt\\\" version=\\\"1.1\\\" viewbox=\\\"-0.0498162 -10.1025 16.0566 10.1524\\\" width=\\\"16.0566pt\\\" xmlns=\\\"http://www.w3.org/2000/svg\\\" xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\"><g transform=\\\"matrix(.013,0,0,-0.013,0,0)\\\"><use xlink:href=\\\"#g113-153\\\"></use></g><g transform=\\\"matrix(.0091,0,0,-0.0091,9.841,-5.741)\\\"></path></g></svg> is the ceiling function of the average of root square, harmonic, geometric, and arithmetic means of the vertex labels of the end vertices of each edge. If the union of range of <svg height=\\\"8.68572pt\\\" style=\\\"vertical-align:-0.0498209pt\\\" version=\\\"1.1\\\" viewbox=\\\"-0.0498162 -8.6359 9.97754 8.68572\\\" width=\\\"9.97754pt\\\" xmlns=\\\"http://www.w3.org/2000/svg\\\" xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\"><g transform=\\\"matrix(.013,0,0,-0.013,0,0)\\\"><use xlink:href=\\\"#g113-153\\\"></use></g></svg> of the node set and the range of <svg height=\\\"8.68572pt\\\" style=\\\"vertical-align:-0.0498209pt\\\" version=\\\"1.1\\\" viewbox=\\\"-0.0498162 -8.6359 9.97754 8.68572\\\" width=\\\"9.97754pt\\\" xmlns=\\\"http://www.w3.org/2000/svg\\\" xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\"><g transform=\\\"matrix(.013,0,0,-0.013,0,0)\\\"><use xlink:href=\\\"#g113-153\\\"></use></g></svg> of the link set is the set <span><svg height=\\\"11.5564pt\\\" style=\\\"vertical-align:-2.26807pt\\\" version=\\\"1.1\\\" viewbox=\\\"-0.0498162 -9.28833 13.715 11.5564\\\" width=\\\"13.715pt\\\" xmlns=\\\"http://www.w3.org/2000/svg\\\" xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\"><g transform=\\\"matrix(.013,0,0,-0.013,0,0)\\\"><use xlink:href=\\\"#g113-124\\\"></use></g><g transform=\\\"matrix(.013,0,0,-0.013,4.511,0)\\\"><use xlink:href=\\\"#g113-50\\\"></use></g><g transform=\\\"matrix(.013,0,0,-0.013,10.751,0)\\\"><use xlink:href=\\\"#g113-45\\\"></use></g></svg><span></span><svg height=\\\"11.5564pt\\\" style=\\\"vertical-align:-2.26807pt\\\" version=\\\"1.1\\\" viewbox=\\\"15.8441838 -9.28833 9.204 11.5564\\\" width=\\\"9.204pt\\\" xmlns=\\\"http://www.w3.org/2000/svg\\\" xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\"><g transform=\\\"matrix(.013,0,0,-0.013,15.894,0)\\\"><use xlink:href=\\\"#g113-51\\\"></use></g><g transform=\\\"matrix(.013,0,0,-0.013,22.134,0)\\\"><use xlink:href=\\\"#g113-45\\\"></use></g></svg><span></span><svg height=\\\"11.5564pt\\\" style=\\\"vertical-align:-2.26807pt\\\" version=\\\"1.1\\\" viewbox=\\\"27.227183800000002 -9.28833 18.427 11.5564\\\" width=\\\"18.427pt\\\" xmlns=\\\"http://www.w3.org/2000/svg\\\" xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\"><g transform=\\\"matrix(.013,0,0,-0.013,27.277,0)\\\"><use xlink:href=\\\"#g113-47\\\"></use></g><g transform=\\\"matrix(.013,0,0,-0.013,32.42,0)\\\"><use xlink:href=\\\"#g113-47\\\"></use></g><g transform=\\\"matrix(.013,0,0,-0.013,37.564,0)\\\"><use xlink:href=\\\"#g113-47\\\"></use></g><g transform=\\\"matrix(.013,0,0,-0.013,42.74,0)\\\"><use xlink:href=\\\"#g113-45\\\"></use></g></svg><span></span><span><svg height=\\\"11.5564pt\\\" style=\\\"vertical-align:-2.26807pt\\\" version=\\\"1.1\\\" viewbox=\\\"47.8331838 -9.28833 13.089 11.5564\\\" width=\\\"13.089pt\\\" xmlns=\\\"http://www.w3.org/2000/svg\\\" xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\"><g transform=\\\"matrix(.013,0,0,-0.013,47.883,0)\\\"><use xlink:href=\\\"#g113-133\\\"></use></g><g transform=\\\"matrix(.013,0,0,-0.013,56.21,0)\\\"><use xlink:href=\\\"#g113-126\\\"></use></g></svg>,</span></span> then <svg height=\\\"8.68572pt\\\" style=\\\"vertical-align:-0.0498209pt\\\" version=\\\"1.1\\\" viewbox=\\\"-0.0498162 -8.6359 9.97754 8.68572\\\" width=\\\"9.97754pt\\\" xmlns=\\\"http://www.w3.org/2000/svg\\\" xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\"><g transform=\\\"matrix(.013,0,0,-0.013,0,0)\\\"><use xlink:href=\\\"#g113-153\\\"></use></g></svg> is called a super classical average assignment (SCAA). This is known as the SCAA criterion. In this study, the graphical structures corresponding to chemical structures based on the SCAA criterion are demonstrated. The graphical depiction of chemical substances was first defined and second, the union of any number of cycles <span><svg height=\\\"11.927pt\\\" style=\\\"vertical-align:-3.291101pt\\\" version=\\\"1.1\\\" viewbox=\\\"-0.0498162 -8.6359 13.9257 11.927\\\" width=\\\"13.9257pt\\\" xmlns=\\\"http://www.w3.org/2000/svg\\\" xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\"><g transform=\\\"matrix(.013,0,0,-0.013,0,0)\\\"></path></g><g transform=\\\"matrix(.0091,0,0,-0.0091,8.619,3.132)\\\"></path></g></svg>,</span> the tadpole graph, the graph extracted by identifying a line of any two cycles <svg height=\\\"11.927pt\\\" style=\\\"vertical-align:-3.291101pt\\\" version=\\\"1.1\\\" viewbox=\\\"-0.0498162 -8.6359 16.602 11.927\\\" width=\\\"16.602pt\\\" xmlns=\\\"http://www.w3.org/2000/svg\\\" xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\"><g transform=\\\"matrix(.013,0,0,-0.013,0,0)\\\"><use xlink:href=\\\"#g113-68\\\"></use></g><g transform=\\\"matrix(.0091,0,0,-0.0091,8.619,3.132)\\\"></path></g></svg> and <span><svg height=\\\"11.927pt\\\" style=\\\"vertical-align:-3.291101pt\\\" version=\\\"1.1\\\" viewbox=\\\"-0.0498162 -8.6359 13.9257 11.927\\\" width=\\\"13.9257pt\\\" xmlns=\\\"http://www.w3.org/2000/svg\\\" xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\"><g transform=\\\"matrix(.013,0,0,-0.013,0,0)\\\"><use xlink:href=\\\"#g113-68\\\"></use></g><g transform=\\\"matrix(.0091,0,0,-0.0091,8.619,3.132)\\\"><use xlink:href=\\\"#g50-111\\\"></use></g></svg>,</span> and the graph extracted by joining any two cycles by a path are all examined in this work.\",\"PeriodicalId\":54214,\"journal\":{\"name\":\"Journal of Mathematics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2024-01-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1155/2024/9360076\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1155/2024/9360076","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

在科学和工程领域,对图形进行编号是一项非常实用和有效的技术。许多图分配技术,包括基于距离的标记、拓扑指数和谱图理论,都可用于研究分子结构。考虑图 ,节点的注入集为 ,其中是节点数和链接数的总和。假设诱导链接分配是每条边的末端顶点的顶点标签的平方根、谐波、几何和算术平均值的上限函数。如果节点集的范围和链接集的范围的集合是 ,则称为超经典平均分配(SCAA)。这就是所谓的 SCAA 准则。本研究展示了基于 SCAA 准则的化学结构对应图形结构。首先定义了化学物质的图形描述,其次研究了任意多个循环的联合图、蝌蚪图、通过识别任意两个循环的一条直线而提取的图、以及通过路径连接任意两个循环而提取的图。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Numerical and Scientific Investigation of Some Molecular Structures Based on the Criterion of Super Classical Average Assignments
Numbering a graph is a very practical and effective technique in science and engineering. Numerous graph assignment techniques, including distance-based labeling, topological indices, and spectral graph theory, can be used to investigate molecule structures. Consider the graph , with the injection from the node set to , where is the sum of the number of nodes and links. Assume that the induced link assignment is the ceiling function of the average of root square, harmonic, geometric, and arithmetic means of the vertex labels of the end vertices of each edge. If the union of range of of the node set and the range of of the link set is the set , then is called a super classical average assignment (SCAA). This is known as the SCAA criterion. In this study, the graphical structures corresponding to chemical structures based on the SCAA criterion are demonstrated. The graphical depiction of chemical substances was first defined and second, the union of any number of cycles , the tadpole graph, the graph extracted by identifying a line of any two cycles and , and the graph extracted by joining any two cycles by a path are all examined in this work.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Mathematics
Journal of Mathematics Mathematics-General Mathematics
CiteScore
2.50
自引率
14.30%
发文量
0
期刊介绍: Journal of Mathematics is a broad scope journal that publishes original research articles as well as review articles on all aspects of both pure and applied mathematics. As well as original research, Journal of Mathematics also publishes focused review articles that assess the state of the art, and identify upcoming challenges and promising solutions for the community.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信