A. Rajesh Kannan, Nazek Alessa, K. Loganathan, Balachandra Pattanaik
{"title":"基于超经典平均分配标准的某些分子结构的数值和科学研究","authors":"A. Rajesh Kannan, Nazek Alessa, K. Loganathan, Balachandra Pattanaik","doi":"10.1155/2024/9360076","DOIUrl":null,"url":null,"abstract":"Numbering a graph is a very practical and effective technique in science and engineering. Numerous graph assignment techniques, including distance-based labeling, topological indices, and spectral graph theory, can be used to investigate molecule structures. Consider the graph <span><svg height=\"8.8423pt\" style=\"vertical-align:-0.2064009pt\" version=\"1.1\" viewbox=\"-0.0498162 -8.6359 9.02496 8.8423\" width=\"9.02496pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g transform=\"matrix(.013,0,0,-0.013,0,0)\"></path></g></svg>,</span> with the injection <svg height=\"8.68572pt\" style=\"vertical-align:-0.0498209pt\" version=\"1.1\" viewbox=\"-0.0498162 -8.6359 9.97754 8.68572\" width=\"9.97754pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g transform=\"matrix(.013,0,0,-0.013,0,0)\"></path></g></svg> from the node set to <span><svg height=\"11.5564pt\" style=\"vertical-align:-2.26807pt\" version=\"1.1\" viewbox=\"-0.0498162 -9.28833 13.715 11.5564\" width=\"13.715pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g transform=\"matrix(.013,0,0,-0.013,0,0)\"></path></g><g transform=\"matrix(.013,0,0,-0.013,4.511,0)\"></path></g><g transform=\"matrix(.013,0,0,-0.013,10.751,0)\"></path></g></svg><span></span><svg height=\"11.5564pt\" style=\"vertical-align:-2.26807pt\" version=\"1.1\" viewbox=\"15.8441838 -9.28833 9.204 11.5564\" width=\"9.204pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g transform=\"matrix(.013,0,0,-0.013,15.894,0)\"></path></g><g transform=\"matrix(.013,0,0,-0.013,22.134,0)\"><use xlink:href=\"#g113-45\"></use></g></svg><span></span><svg height=\"11.5564pt\" style=\"vertical-align:-2.26807pt\" version=\"1.1\" viewbox=\"27.227183800000002 -9.28833 18.427 11.5564\" width=\"18.427pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g transform=\"matrix(.013,0,0,-0.013,27.277,0)\"></path></g><g transform=\"matrix(.013,0,0,-0.013,32.42,0)\"><use xlink:href=\"#g113-47\"></use></g><g transform=\"matrix(.013,0,0,-0.013,37.564,0)\"><use xlink:href=\"#g113-47\"></use></g><g transform=\"matrix(.013,0,0,-0.013,42.74,0)\"><use xlink:href=\"#g113-45\"></use></g></svg><span></span><span><svg height=\"11.5564pt\" style=\"vertical-align:-2.26807pt\" version=\"1.1\" viewbox=\"47.8331838 -9.28833 13.089 11.5564\" width=\"13.089pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g transform=\"matrix(.013,0,0,-0.013,47.883,0)\"></path></g><g transform=\"matrix(.013,0,0,-0.013,56.21,0)\"></path></g></svg>,</span></span> where <svg height=\"8.68572pt\" style=\"vertical-align:-0.0498209pt\" version=\"1.1\" viewbox=\"-0.0498162 -8.6359 8.46388 8.68572\" width=\"8.46388pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g transform=\"matrix(.013,0,0,-0.013,0,0)\"><use xlink:href=\"#g113-133\"></use></g></svg> is the sum of the number of nodes and links. Assume that the induced link assignment <svg height=\"10.1524pt\" style=\"vertical-align:-0.04990005pt\" version=\"1.1\" viewbox=\"-0.0498162 -10.1025 16.0566 10.1524\" width=\"16.0566pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g transform=\"matrix(.013,0,0,-0.013,0,0)\"><use xlink:href=\"#g113-153\"></use></g><g transform=\"matrix(.0091,0,0,-0.0091,9.841,-5.741)\"></path></g></svg> is the ceiling function of the average of root square, harmonic, geometric, and arithmetic means of the vertex labels of the end vertices of each edge. If the union of range of <svg height=\"8.68572pt\" style=\"vertical-align:-0.0498209pt\" version=\"1.1\" viewbox=\"-0.0498162 -8.6359 9.97754 8.68572\" width=\"9.97754pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g transform=\"matrix(.013,0,0,-0.013,0,0)\"><use xlink:href=\"#g113-153\"></use></g></svg> of the node set and the range of <svg height=\"8.68572pt\" style=\"vertical-align:-0.0498209pt\" version=\"1.1\" viewbox=\"-0.0498162 -8.6359 9.97754 8.68572\" width=\"9.97754pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g transform=\"matrix(.013,0,0,-0.013,0,0)\"><use xlink:href=\"#g113-153\"></use></g></svg> of the link set is the set <span><svg height=\"11.5564pt\" style=\"vertical-align:-2.26807pt\" version=\"1.1\" viewbox=\"-0.0498162 -9.28833 13.715 11.5564\" width=\"13.715pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g transform=\"matrix(.013,0,0,-0.013,0,0)\"><use xlink:href=\"#g113-124\"></use></g><g transform=\"matrix(.013,0,0,-0.013,4.511,0)\"><use xlink:href=\"#g113-50\"></use></g><g transform=\"matrix(.013,0,0,-0.013,10.751,0)\"><use xlink:href=\"#g113-45\"></use></g></svg><span></span><svg height=\"11.5564pt\" style=\"vertical-align:-2.26807pt\" version=\"1.1\" viewbox=\"15.8441838 -9.28833 9.204 11.5564\" width=\"9.204pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g transform=\"matrix(.013,0,0,-0.013,15.894,0)\"><use xlink:href=\"#g113-51\"></use></g><g transform=\"matrix(.013,0,0,-0.013,22.134,0)\"><use xlink:href=\"#g113-45\"></use></g></svg><span></span><svg height=\"11.5564pt\" style=\"vertical-align:-2.26807pt\" version=\"1.1\" viewbox=\"27.227183800000002 -9.28833 18.427 11.5564\" width=\"18.427pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g transform=\"matrix(.013,0,0,-0.013,27.277,0)\"><use xlink:href=\"#g113-47\"></use></g><g transform=\"matrix(.013,0,0,-0.013,32.42,0)\"><use xlink:href=\"#g113-47\"></use></g><g transform=\"matrix(.013,0,0,-0.013,37.564,0)\"><use xlink:href=\"#g113-47\"></use></g><g transform=\"matrix(.013,0,0,-0.013,42.74,0)\"><use xlink:href=\"#g113-45\"></use></g></svg><span></span><span><svg height=\"11.5564pt\" style=\"vertical-align:-2.26807pt\" version=\"1.1\" viewbox=\"47.8331838 -9.28833 13.089 11.5564\" width=\"13.089pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g transform=\"matrix(.013,0,0,-0.013,47.883,0)\"><use xlink:href=\"#g113-133\"></use></g><g transform=\"matrix(.013,0,0,-0.013,56.21,0)\"><use xlink:href=\"#g113-126\"></use></g></svg>,</span></span> then <svg height=\"8.68572pt\" style=\"vertical-align:-0.0498209pt\" version=\"1.1\" viewbox=\"-0.0498162 -8.6359 9.97754 8.68572\" width=\"9.97754pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g transform=\"matrix(.013,0,0,-0.013,0,0)\"><use xlink:href=\"#g113-153\"></use></g></svg> is called a super classical average assignment (SCAA). This is known as the SCAA criterion. In this study, the graphical structures corresponding to chemical structures based on the SCAA criterion are demonstrated. The graphical depiction of chemical substances was first defined and second, the union of any number of cycles <span><svg height=\"11.927pt\" style=\"vertical-align:-3.291101pt\" version=\"1.1\" viewbox=\"-0.0498162 -8.6359 13.9257 11.927\" width=\"13.9257pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g transform=\"matrix(.013,0,0,-0.013,0,0)\"></path></g><g transform=\"matrix(.0091,0,0,-0.0091,8.619,3.132)\"></path></g></svg>,</span> the tadpole graph, the graph extracted by identifying a line of any two cycles <svg height=\"11.927pt\" style=\"vertical-align:-3.291101pt\" version=\"1.1\" viewbox=\"-0.0498162 -8.6359 16.602 11.927\" width=\"16.602pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g transform=\"matrix(.013,0,0,-0.013,0,0)\"><use xlink:href=\"#g113-68\"></use></g><g transform=\"matrix(.0091,0,0,-0.0091,8.619,3.132)\"></path></g></svg> and <span><svg height=\"11.927pt\" style=\"vertical-align:-3.291101pt\" version=\"1.1\" viewbox=\"-0.0498162 -8.6359 13.9257 11.927\" width=\"13.9257pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g transform=\"matrix(.013,0,0,-0.013,0,0)\"><use xlink:href=\"#g113-68\"></use></g><g transform=\"matrix(.0091,0,0,-0.0091,8.619,3.132)\"><use xlink:href=\"#g50-111\"></use></g></svg>,</span> and the graph extracted by joining any two cycles by a path are all examined in this work.","PeriodicalId":54214,"journal":{"name":"Journal of Mathematics","volume":null,"pages":null},"PeriodicalIF":1.3000,"publicationDate":"2024-01-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Numerical and Scientific Investigation of Some Molecular Structures Based on the Criterion of Super Classical Average Assignments\",\"authors\":\"A. Rajesh Kannan, Nazek Alessa, K. Loganathan, Balachandra Pattanaik\",\"doi\":\"10.1155/2024/9360076\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Numbering a graph is a very practical and effective technique in science and engineering. Numerous graph assignment techniques, including distance-based labeling, topological indices, and spectral graph theory, can be used to investigate molecule structures. Consider the graph <span><svg height=\\\"8.8423pt\\\" style=\\\"vertical-align:-0.2064009pt\\\" version=\\\"1.1\\\" viewbox=\\\"-0.0498162 -8.6359 9.02496 8.8423\\\" width=\\\"9.02496pt\\\" xmlns=\\\"http://www.w3.org/2000/svg\\\" xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\"><g transform=\\\"matrix(.013,0,0,-0.013,0,0)\\\"></path></g></svg>,</span> with the injection <svg height=\\\"8.68572pt\\\" style=\\\"vertical-align:-0.0498209pt\\\" version=\\\"1.1\\\" viewbox=\\\"-0.0498162 -8.6359 9.97754 8.68572\\\" width=\\\"9.97754pt\\\" xmlns=\\\"http://www.w3.org/2000/svg\\\" xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\"><g transform=\\\"matrix(.013,0,0,-0.013,0,0)\\\"></path></g></svg> from the node set to <span><svg height=\\\"11.5564pt\\\" style=\\\"vertical-align:-2.26807pt\\\" version=\\\"1.1\\\" viewbox=\\\"-0.0498162 -9.28833 13.715 11.5564\\\" width=\\\"13.715pt\\\" xmlns=\\\"http://www.w3.org/2000/svg\\\" xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\"><g transform=\\\"matrix(.013,0,0,-0.013,0,0)\\\"></path></g><g transform=\\\"matrix(.013,0,0,-0.013,4.511,0)\\\"></path></g><g transform=\\\"matrix(.013,0,0,-0.013,10.751,0)\\\"></path></g></svg><span></span><svg height=\\\"11.5564pt\\\" style=\\\"vertical-align:-2.26807pt\\\" version=\\\"1.1\\\" viewbox=\\\"15.8441838 -9.28833 9.204 11.5564\\\" width=\\\"9.204pt\\\" xmlns=\\\"http://www.w3.org/2000/svg\\\" xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\"><g transform=\\\"matrix(.013,0,0,-0.013,15.894,0)\\\"></path></g><g transform=\\\"matrix(.013,0,0,-0.013,22.134,0)\\\"><use xlink:href=\\\"#g113-45\\\"></use></g></svg><span></span><svg height=\\\"11.5564pt\\\" style=\\\"vertical-align:-2.26807pt\\\" version=\\\"1.1\\\" viewbox=\\\"27.227183800000002 -9.28833 18.427 11.5564\\\" width=\\\"18.427pt\\\" xmlns=\\\"http://www.w3.org/2000/svg\\\" xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\"><g transform=\\\"matrix(.013,0,0,-0.013,27.277,0)\\\"></path></g><g transform=\\\"matrix(.013,0,0,-0.013,32.42,0)\\\"><use xlink:href=\\\"#g113-47\\\"></use></g><g transform=\\\"matrix(.013,0,0,-0.013,37.564,0)\\\"><use xlink:href=\\\"#g113-47\\\"></use></g><g transform=\\\"matrix(.013,0,0,-0.013,42.74,0)\\\"><use xlink:href=\\\"#g113-45\\\"></use></g></svg><span></span><span><svg height=\\\"11.5564pt\\\" style=\\\"vertical-align:-2.26807pt\\\" version=\\\"1.1\\\" viewbox=\\\"47.8331838 -9.28833 13.089 11.5564\\\" width=\\\"13.089pt\\\" xmlns=\\\"http://www.w3.org/2000/svg\\\" xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\"><g transform=\\\"matrix(.013,0,0,-0.013,47.883,0)\\\"></path></g><g transform=\\\"matrix(.013,0,0,-0.013,56.21,0)\\\"></path></g></svg>,</span></span> where <svg height=\\\"8.68572pt\\\" style=\\\"vertical-align:-0.0498209pt\\\" version=\\\"1.1\\\" viewbox=\\\"-0.0498162 -8.6359 8.46388 8.68572\\\" width=\\\"8.46388pt\\\" xmlns=\\\"http://www.w3.org/2000/svg\\\" xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\"><g transform=\\\"matrix(.013,0,0,-0.013,0,0)\\\"><use xlink:href=\\\"#g113-133\\\"></use></g></svg> is the sum of the number of nodes and links. Assume that the induced link assignment <svg height=\\\"10.1524pt\\\" style=\\\"vertical-align:-0.04990005pt\\\" version=\\\"1.1\\\" viewbox=\\\"-0.0498162 -10.1025 16.0566 10.1524\\\" width=\\\"16.0566pt\\\" xmlns=\\\"http://www.w3.org/2000/svg\\\" xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\"><g transform=\\\"matrix(.013,0,0,-0.013,0,0)\\\"><use xlink:href=\\\"#g113-153\\\"></use></g><g transform=\\\"matrix(.0091,0,0,-0.0091,9.841,-5.741)\\\"></path></g></svg> is the ceiling function of the average of root square, harmonic, geometric, and arithmetic means of the vertex labels of the end vertices of each edge. If the union of range of <svg height=\\\"8.68572pt\\\" style=\\\"vertical-align:-0.0498209pt\\\" version=\\\"1.1\\\" viewbox=\\\"-0.0498162 -8.6359 9.97754 8.68572\\\" width=\\\"9.97754pt\\\" xmlns=\\\"http://www.w3.org/2000/svg\\\" xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\"><g transform=\\\"matrix(.013,0,0,-0.013,0,0)\\\"><use xlink:href=\\\"#g113-153\\\"></use></g></svg> of the node set and the range of <svg height=\\\"8.68572pt\\\" style=\\\"vertical-align:-0.0498209pt\\\" version=\\\"1.1\\\" viewbox=\\\"-0.0498162 -8.6359 9.97754 8.68572\\\" width=\\\"9.97754pt\\\" xmlns=\\\"http://www.w3.org/2000/svg\\\" xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\"><g transform=\\\"matrix(.013,0,0,-0.013,0,0)\\\"><use xlink:href=\\\"#g113-153\\\"></use></g></svg> of the link set is the set <span><svg height=\\\"11.5564pt\\\" style=\\\"vertical-align:-2.26807pt\\\" version=\\\"1.1\\\" viewbox=\\\"-0.0498162 -9.28833 13.715 11.5564\\\" width=\\\"13.715pt\\\" xmlns=\\\"http://www.w3.org/2000/svg\\\" xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\"><g transform=\\\"matrix(.013,0,0,-0.013,0,0)\\\"><use xlink:href=\\\"#g113-124\\\"></use></g><g transform=\\\"matrix(.013,0,0,-0.013,4.511,0)\\\"><use xlink:href=\\\"#g113-50\\\"></use></g><g transform=\\\"matrix(.013,0,0,-0.013,10.751,0)\\\"><use xlink:href=\\\"#g113-45\\\"></use></g></svg><span></span><svg height=\\\"11.5564pt\\\" style=\\\"vertical-align:-2.26807pt\\\" version=\\\"1.1\\\" viewbox=\\\"15.8441838 -9.28833 9.204 11.5564\\\" width=\\\"9.204pt\\\" xmlns=\\\"http://www.w3.org/2000/svg\\\" xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\"><g transform=\\\"matrix(.013,0,0,-0.013,15.894,0)\\\"><use xlink:href=\\\"#g113-51\\\"></use></g><g transform=\\\"matrix(.013,0,0,-0.013,22.134,0)\\\"><use xlink:href=\\\"#g113-45\\\"></use></g></svg><span></span><svg height=\\\"11.5564pt\\\" style=\\\"vertical-align:-2.26807pt\\\" version=\\\"1.1\\\" viewbox=\\\"27.227183800000002 -9.28833 18.427 11.5564\\\" width=\\\"18.427pt\\\" xmlns=\\\"http://www.w3.org/2000/svg\\\" xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\"><g transform=\\\"matrix(.013,0,0,-0.013,27.277,0)\\\"><use xlink:href=\\\"#g113-47\\\"></use></g><g transform=\\\"matrix(.013,0,0,-0.013,32.42,0)\\\"><use xlink:href=\\\"#g113-47\\\"></use></g><g transform=\\\"matrix(.013,0,0,-0.013,37.564,0)\\\"><use xlink:href=\\\"#g113-47\\\"></use></g><g transform=\\\"matrix(.013,0,0,-0.013,42.74,0)\\\"><use xlink:href=\\\"#g113-45\\\"></use></g></svg><span></span><span><svg height=\\\"11.5564pt\\\" style=\\\"vertical-align:-2.26807pt\\\" version=\\\"1.1\\\" viewbox=\\\"47.8331838 -9.28833 13.089 11.5564\\\" width=\\\"13.089pt\\\" xmlns=\\\"http://www.w3.org/2000/svg\\\" xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\"><g transform=\\\"matrix(.013,0,0,-0.013,47.883,0)\\\"><use xlink:href=\\\"#g113-133\\\"></use></g><g transform=\\\"matrix(.013,0,0,-0.013,56.21,0)\\\"><use xlink:href=\\\"#g113-126\\\"></use></g></svg>,</span></span> then <svg height=\\\"8.68572pt\\\" style=\\\"vertical-align:-0.0498209pt\\\" version=\\\"1.1\\\" viewbox=\\\"-0.0498162 -8.6359 9.97754 8.68572\\\" width=\\\"9.97754pt\\\" xmlns=\\\"http://www.w3.org/2000/svg\\\" xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\"><g transform=\\\"matrix(.013,0,0,-0.013,0,0)\\\"><use xlink:href=\\\"#g113-153\\\"></use></g></svg> is called a super classical average assignment (SCAA). This is known as the SCAA criterion. In this study, the graphical structures corresponding to chemical structures based on the SCAA criterion are demonstrated. The graphical depiction of chemical substances was first defined and second, the union of any number of cycles <span><svg height=\\\"11.927pt\\\" style=\\\"vertical-align:-3.291101pt\\\" version=\\\"1.1\\\" viewbox=\\\"-0.0498162 -8.6359 13.9257 11.927\\\" width=\\\"13.9257pt\\\" xmlns=\\\"http://www.w3.org/2000/svg\\\" xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\"><g transform=\\\"matrix(.013,0,0,-0.013,0,0)\\\"></path></g><g transform=\\\"matrix(.0091,0,0,-0.0091,8.619,3.132)\\\"></path></g></svg>,</span> the tadpole graph, the graph extracted by identifying a line of any two cycles <svg height=\\\"11.927pt\\\" style=\\\"vertical-align:-3.291101pt\\\" version=\\\"1.1\\\" viewbox=\\\"-0.0498162 -8.6359 16.602 11.927\\\" width=\\\"16.602pt\\\" xmlns=\\\"http://www.w3.org/2000/svg\\\" xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\"><g transform=\\\"matrix(.013,0,0,-0.013,0,0)\\\"><use xlink:href=\\\"#g113-68\\\"></use></g><g transform=\\\"matrix(.0091,0,0,-0.0091,8.619,3.132)\\\"></path></g></svg> and <span><svg height=\\\"11.927pt\\\" style=\\\"vertical-align:-3.291101pt\\\" version=\\\"1.1\\\" viewbox=\\\"-0.0498162 -8.6359 13.9257 11.927\\\" width=\\\"13.9257pt\\\" xmlns=\\\"http://www.w3.org/2000/svg\\\" xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\"><g transform=\\\"matrix(.013,0,0,-0.013,0,0)\\\"><use xlink:href=\\\"#g113-68\\\"></use></g><g transform=\\\"matrix(.0091,0,0,-0.0091,8.619,3.132)\\\"><use xlink:href=\\\"#g50-111\\\"></use></g></svg>,</span> and the graph extracted by joining any two cycles by a path are all examined in this work.\",\"PeriodicalId\":54214,\"journal\":{\"name\":\"Journal of Mathematics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2024-01-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1155/2024/9360076\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1155/2024/9360076","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
Numerical and Scientific Investigation of Some Molecular Structures Based on the Criterion of Super Classical Average Assignments
Numbering a graph is a very practical and effective technique in science and engineering. Numerous graph assignment techniques, including distance-based labeling, topological indices, and spectral graph theory, can be used to investigate molecule structures. Consider the graph , with the injection from the node set to , where is the sum of the number of nodes and links. Assume that the induced link assignment is the ceiling function of the average of root square, harmonic, geometric, and arithmetic means of the vertex labels of the end vertices of each edge. If the union of range of of the node set and the range of of the link set is the set , then is called a super classical average assignment (SCAA). This is known as the SCAA criterion. In this study, the graphical structures corresponding to chemical structures based on the SCAA criterion are demonstrated. The graphical depiction of chemical substances was first defined and second, the union of any number of cycles , the tadpole graph, the graph extracted by identifying a line of any two cycles and , and the graph extracted by joining any two cycles by a path are all examined in this work.
期刊介绍:
Journal of Mathematics is a broad scope journal that publishes original research articles as well as review articles on all aspects of both pure and applied mathematics. As well as original research, Journal of Mathematics also publishes focused review articles that assess the state of the art, and identify upcoming challenges and promising solutions for the community.