两正交投影平行和数值范围的几何特征

IF 1.3 4区 数学 Q1 MATHEMATICS
Weiyan Yu, Ran Wang, Chen Zhang
{"title":"两正交投影平行和数值范围的几何特征","authors":"Weiyan Yu, Ran Wang, Chen Zhang","doi":"10.1155/2024/1448498","DOIUrl":null,"url":null,"abstract":"Let <svg height=\"9.25986pt\" style=\"vertical-align:-0.2455397pt\" version=\"1.1\" viewbox=\"-0.0498162 -9.01432 13.1092 9.25986\" width=\"13.1092pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g transform=\"matrix(.013,0,0,-0.013,0,0)\"></path></g></svg> be a complex separable Hilbert space and <svg height=\"11.5564pt\" style=\"vertical-align:-2.26807pt\" version=\"1.1\" viewbox=\"-0.0498162 -9.28833 34.5353 11.5564\" width=\"34.5353pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g transform=\"matrix(.013,0,0,-0.013,0,0)\"></path></g><g transform=\"matrix(.013,0,0,-0.013,12.35,0)\"></path></g><g transform=\"matrix(.013,0,0,-0.013,16.848,0)\"><use xlink:href=\"#g198-9\"></use></g><g transform=\"matrix(.013,0,0,-0.013,29.809,0)\"></path></g></svg> be the algebra of all bounded linear operators from <svg height=\"9.25986pt\" style=\"vertical-align:-0.2455397pt\" version=\"1.1\" viewbox=\"-0.0498162 -9.01432 13.1092 9.25986\" width=\"13.1092pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g transform=\"matrix(.013,0,0,-0.013,0,0)\"><use xlink:href=\"#g198-9\"></use></g></svg> to <span><svg height=\"9.25986pt\" style=\"vertical-align:-0.2455397pt\" version=\"1.1\" viewbox=\"-0.0498162 -9.01432 13.1092 9.25986\" width=\"13.1092pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g transform=\"matrix(.013,0,0,-0.013,0,0)\"><use xlink:href=\"#g198-9\"></use></g></svg>.</span> Our goal in this article is to describe the closure of numerical range of parallel sum operator <span><svg height=\"10.9105pt\" style=\"vertical-align:-2.15716pt\" version=\"1.1\" viewbox=\"-0.0498162 -8.75334 14.622 10.9105\" width=\"14.622pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g transform=\"matrix(.013,0,0,-0.013,0,0)\"></path></g><g transform=\"matrix(.013,0,0,-0.013,11.658,0)\"></path></g></svg><span></span><svg height=\"10.9105pt\" style=\"vertical-align:-2.15716pt\" version=\"1.1\" viewbox=\"18.204183800000003 -8.75334 17.203 10.9105\" width=\"17.203pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g transform=\"matrix(.013,0,0,-0.013,18.254,0)\"></path></g><g transform=\"matrix(.013,0,0,-0.013,25.573,0)\"></path></g></svg></span> for two orthogonal projections <svg height=\"8.68572pt\" style=\"vertical-align:-0.0498209pt\" version=\"1.1\" viewbox=\"-0.0498162 -8.6359 8.15071 8.68572\" width=\"8.15071pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g transform=\"matrix(.013,0,0,-0.013,0,0)\"><use xlink:href=\"#g113-81\"></use></g></svg> and <svg height=\"10.7866pt\" style=\"vertical-align:-2.150701pt\" version=\"1.1\" viewbox=\"-0.0498162 -8.6359 9.52083 10.7866\" width=\"9.52083pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g transform=\"matrix(.013,0,0,-0.013,0,0)\"></path></g></svg> in <svg height=\"11.5564pt\" style=\"vertical-align:-2.26807pt\" version=\"1.1\" viewbox=\"-0.0498162 -9.28833 34.5353 11.5564\" width=\"34.5353pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g transform=\"matrix(.013,0,0,-0.013,0,0)\"><use xlink:href=\"#g198-3\"></use></g><g transform=\"matrix(.013,0,0,-0.013,12.35,0)\"><use xlink:href=\"#g113-41\"></use></g><g transform=\"matrix(.013,0,0,-0.013,16.848,0)\"><use xlink:href=\"#g198-9\"></use></g><g transform=\"matrix(.013,0,0,-0.013,29.809,0)\"><use xlink:href=\"#g113-42\"></use></g></svg> as a closed convex hull of some explicit ellipses parameterized by points in the spectrum.","PeriodicalId":54214,"journal":{"name":"Journal of Mathematics","volume":null,"pages":null},"PeriodicalIF":1.3000,"publicationDate":"2024-01-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Geometric Characterization of the Numerical Range of Parallel Sum of Two Orthogonal Projections\",\"authors\":\"Weiyan Yu, Ran Wang, Chen Zhang\",\"doi\":\"10.1155/2024/1448498\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let <svg height=\\\"9.25986pt\\\" style=\\\"vertical-align:-0.2455397pt\\\" version=\\\"1.1\\\" viewbox=\\\"-0.0498162 -9.01432 13.1092 9.25986\\\" width=\\\"13.1092pt\\\" xmlns=\\\"http://www.w3.org/2000/svg\\\" xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\"><g transform=\\\"matrix(.013,0,0,-0.013,0,0)\\\"></path></g></svg> be a complex separable Hilbert space and <svg height=\\\"11.5564pt\\\" style=\\\"vertical-align:-2.26807pt\\\" version=\\\"1.1\\\" viewbox=\\\"-0.0498162 -9.28833 34.5353 11.5564\\\" width=\\\"34.5353pt\\\" xmlns=\\\"http://www.w3.org/2000/svg\\\" xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\"><g transform=\\\"matrix(.013,0,0,-0.013,0,0)\\\"></path></g><g transform=\\\"matrix(.013,0,0,-0.013,12.35,0)\\\"></path></g><g transform=\\\"matrix(.013,0,0,-0.013,16.848,0)\\\"><use xlink:href=\\\"#g198-9\\\"></use></g><g transform=\\\"matrix(.013,0,0,-0.013,29.809,0)\\\"></path></g></svg> be the algebra of all bounded linear operators from <svg height=\\\"9.25986pt\\\" style=\\\"vertical-align:-0.2455397pt\\\" version=\\\"1.1\\\" viewbox=\\\"-0.0498162 -9.01432 13.1092 9.25986\\\" width=\\\"13.1092pt\\\" xmlns=\\\"http://www.w3.org/2000/svg\\\" xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\"><g transform=\\\"matrix(.013,0,0,-0.013,0,0)\\\"><use xlink:href=\\\"#g198-9\\\"></use></g></svg> to <span><svg height=\\\"9.25986pt\\\" style=\\\"vertical-align:-0.2455397pt\\\" version=\\\"1.1\\\" viewbox=\\\"-0.0498162 -9.01432 13.1092 9.25986\\\" width=\\\"13.1092pt\\\" xmlns=\\\"http://www.w3.org/2000/svg\\\" xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\"><g transform=\\\"matrix(.013,0,0,-0.013,0,0)\\\"><use xlink:href=\\\"#g198-9\\\"></use></g></svg>.</span> Our goal in this article is to describe the closure of numerical range of parallel sum operator <span><svg height=\\\"10.9105pt\\\" style=\\\"vertical-align:-2.15716pt\\\" version=\\\"1.1\\\" viewbox=\\\"-0.0498162 -8.75334 14.622 10.9105\\\" width=\\\"14.622pt\\\" xmlns=\\\"http://www.w3.org/2000/svg\\\" xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\"><g transform=\\\"matrix(.013,0,0,-0.013,0,0)\\\"></path></g><g transform=\\\"matrix(.013,0,0,-0.013,11.658,0)\\\"></path></g></svg><span></span><svg height=\\\"10.9105pt\\\" style=\\\"vertical-align:-2.15716pt\\\" version=\\\"1.1\\\" viewbox=\\\"18.204183800000003 -8.75334 17.203 10.9105\\\" width=\\\"17.203pt\\\" xmlns=\\\"http://www.w3.org/2000/svg\\\" xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\"><g transform=\\\"matrix(.013,0,0,-0.013,18.254,0)\\\"></path></g><g transform=\\\"matrix(.013,0,0,-0.013,25.573,0)\\\"></path></g></svg></span> for two orthogonal projections <svg height=\\\"8.68572pt\\\" style=\\\"vertical-align:-0.0498209pt\\\" version=\\\"1.1\\\" viewbox=\\\"-0.0498162 -8.6359 8.15071 8.68572\\\" width=\\\"8.15071pt\\\" xmlns=\\\"http://www.w3.org/2000/svg\\\" xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\"><g transform=\\\"matrix(.013,0,0,-0.013,0,0)\\\"><use xlink:href=\\\"#g113-81\\\"></use></g></svg> and <svg height=\\\"10.7866pt\\\" style=\\\"vertical-align:-2.150701pt\\\" version=\\\"1.1\\\" viewbox=\\\"-0.0498162 -8.6359 9.52083 10.7866\\\" width=\\\"9.52083pt\\\" xmlns=\\\"http://www.w3.org/2000/svg\\\" xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\"><g transform=\\\"matrix(.013,0,0,-0.013,0,0)\\\"></path></g></svg> in <svg height=\\\"11.5564pt\\\" style=\\\"vertical-align:-2.26807pt\\\" version=\\\"1.1\\\" viewbox=\\\"-0.0498162 -9.28833 34.5353 11.5564\\\" width=\\\"34.5353pt\\\" xmlns=\\\"http://www.w3.org/2000/svg\\\" xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\"><g transform=\\\"matrix(.013,0,0,-0.013,0,0)\\\"><use xlink:href=\\\"#g198-3\\\"></use></g><g transform=\\\"matrix(.013,0,0,-0.013,12.35,0)\\\"><use xlink:href=\\\"#g113-41\\\"></use></g><g transform=\\\"matrix(.013,0,0,-0.013,16.848,0)\\\"><use xlink:href=\\\"#g198-9\\\"></use></g><g transform=\\\"matrix(.013,0,0,-0.013,29.809,0)\\\"><use xlink:href=\\\"#g113-42\\\"></use></g></svg> as a closed convex hull of some explicit ellipses parameterized by points in the spectrum.\",\"PeriodicalId\":54214,\"journal\":{\"name\":\"Journal of Mathematics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2024-01-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1155/2024/1448498\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1155/2024/1448498","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

假设是一个复杂的可分离希尔伯特空间,并且是从 到 的所有有界线性算子的代数。我们在本文中的目标是将两个正交投影的平行和算子的数值范围的闭合描述为以频谱中的点为参数的一些显式椭圆的闭合凸壳。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Geometric Characterization of the Numerical Range of Parallel Sum of Two Orthogonal Projections
Let be a complex separable Hilbert space and be the algebra of all bounded linear operators from to . Our goal in this article is to describe the closure of numerical range of parallel sum operator for two orthogonal projections and in as a closed convex hull of some explicit ellipses parameterized by points in the spectrum.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Mathematics
Journal of Mathematics Mathematics-General Mathematics
CiteScore
2.50
自引率
14.30%
发文量
0
期刊介绍: Journal of Mathematics is a broad scope journal that publishes original research articles as well as review articles on all aspects of both pure and applied mathematics. As well as original research, Journal of Mathematics also publishes focused review articles that assess the state of the art, and identify upcoming challenges and promising solutions for the community.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信