有限链环上的 MDS 和 MHDR 循环码

IF 1.3 4区 数学 Q1 MATHEMATICS
Monika Dalal, Sucheta Dutt, Ranjeet Sehmi
{"title":"有限链环上的 MDS 和 MHDR 循环码","authors":"Monika Dalal, Sucheta Dutt, Ranjeet Sehmi","doi":"10.1155/2024/4540992","DOIUrl":null,"url":null,"abstract":"This work establishes a unique set of generators for a cyclic code over a finite chain ring. Towards this, we first determine the minimal spanning set and rank of the code. Furthermore, sufficient as well as necessary conditions for a cyclic code to be an MDS code and for a cyclic code to be an MHDR code are obtained. Finally, to support our results, some examples of optimal cyclic codes are presented.","PeriodicalId":54214,"journal":{"name":"Journal of Mathematics","volume":null,"pages":null},"PeriodicalIF":1.3000,"publicationDate":"2024-01-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"MDS and MHDR Cyclic Codes over Finite Chain Rings\",\"authors\":\"Monika Dalal, Sucheta Dutt, Ranjeet Sehmi\",\"doi\":\"10.1155/2024/4540992\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This work establishes a unique set of generators for a cyclic code over a finite chain ring. Towards this, we first determine the minimal spanning set and rank of the code. Furthermore, sufficient as well as necessary conditions for a cyclic code to be an MDS code and for a cyclic code to be an MHDR code are obtained. Finally, to support our results, some examples of optimal cyclic codes are presented.\",\"PeriodicalId\":54214,\"journal\":{\"name\":\"Journal of Mathematics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2024-01-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1155/2024/4540992\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1155/2024/4540992","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

这项研究为有限链环上的循环码建立了一组唯一的生成器。为此,我们首先确定了码的最小跨集和秩。此外,我们还获得了循环码成为 MDS 码和循环码成为 MHDR 码的充分条件和必要条件。最后,为了支持我们的结果,我们给出了一些最优循环码的例子。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
MDS and MHDR Cyclic Codes over Finite Chain Rings
This work establishes a unique set of generators for a cyclic code over a finite chain ring. Towards this, we first determine the minimal spanning set and rank of the code. Furthermore, sufficient as well as necessary conditions for a cyclic code to be an MDS code and for a cyclic code to be an MHDR code are obtained. Finally, to support our results, some examples of optimal cyclic codes are presented.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Mathematics
Journal of Mathematics Mathematics-General Mathematics
CiteScore
2.50
自引率
14.30%
发文量
0
期刊介绍: Journal of Mathematics is a broad scope journal that publishes original research articles as well as review articles on all aspects of both pure and applied mathematics. As well as original research, Journal of Mathematics also publishes focused review articles that assess the state of the art, and identify upcoming challenges and promising solutions for the community.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信