Akash Jaiswal , Zulfequar Ahmad , Surendra Kumar Mishra
{"title":"无粘性床面材料水力吸除实验研究","authors":"Akash Jaiswal , Zulfequar Ahmad , Surendra Kumar Mishra","doi":"10.1016/j.ijsrc.2024.01.002","DOIUrl":null,"url":null,"abstract":"<div><p>The current study deals with experiments on hydro-suction removal of cohesionless bed material from reservoirs. The primary focus lies in scrutinizing the scour profile and the volume of bed material removed through hydro-suction. A comprehensive record of 252 datasets was collected from experiments done on various combinations of governing parameters. The resultant equilibrium scour profile exhibited a symmetrical configuration resembling a semi-ellipsoidal shape. Notably, for the densimetric Forude number equal to or less than 5.8, a small central hump within the scour hole was seen. The investigation found that the optimal sediment removal efficiency was obtained when the <em>C</em>/<em>D</em> ratio was zero (where <em>C</em> is the suction inlet height and <em>D</em> is the suction pipe diameter) and with the highest densimetric Froude number. The sediment to water volume removal was highest in the initial few seconds, and reduced swiftly, followed by a subsequent smaller peak and gradually decreased to zero at equilibrium. Empirical equations for computing maximum scour depth, scour radius, and scour profile at equilibrium also were developed, which predict values within a commendable ±10% error range.</p></div>","PeriodicalId":50290,"journal":{"name":"International Journal of Sediment Research","volume":"39 2","pages":"Pages 291-304"},"PeriodicalIF":3.5000,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1001627924000088/pdfft?md5=ff88465352cee60a30e82feeb9db7bb0&pid=1-s2.0-S1001627924000088-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Experimental study on hydro-suction removal of cohesionless bed material\",\"authors\":\"Akash Jaiswal , Zulfequar Ahmad , Surendra Kumar Mishra\",\"doi\":\"10.1016/j.ijsrc.2024.01.002\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The current study deals with experiments on hydro-suction removal of cohesionless bed material from reservoirs. The primary focus lies in scrutinizing the scour profile and the volume of bed material removed through hydro-suction. A comprehensive record of 252 datasets was collected from experiments done on various combinations of governing parameters. The resultant equilibrium scour profile exhibited a symmetrical configuration resembling a semi-ellipsoidal shape. Notably, for the densimetric Forude number equal to or less than 5.8, a small central hump within the scour hole was seen. The investigation found that the optimal sediment removal efficiency was obtained when the <em>C</em>/<em>D</em> ratio was zero (where <em>C</em> is the suction inlet height and <em>D</em> is the suction pipe diameter) and with the highest densimetric Froude number. The sediment to water volume removal was highest in the initial few seconds, and reduced swiftly, followed by a subsequent smaller peak and gradually decreased to zero at equilibrium. Empirical equations for computing maximum scour depth, scour radius, and scour profile at equilibrium also were developed, which predict values within a commendable ±10% error range.</p></div>\",\"PeriodicalId\":50290,\"journal\":{\"name\":\"International Journal of Sediment Research\",\"volume\":\"39 2\",\"pages\":\"Pages 291-304\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2024-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S1001627924000088/pdfft?md5=ff88465352cee60a30e82feeb9db7bb0&pid=1-s2.0-S1001627924000088-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Sediment Research\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1001627924000088\",\"RegionNum\":2,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Sediment Research","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1001627924000088","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
Experimental study on hydro-suction removal of cohesionless bed material
The current study deals with experiments on hydro-suction removal of cohesionless bed material from reservoirs. The primary focus lies in scrutinizing the scour profile and the volume of bed material removed through hydro-suction. A comprehensive record of 252 datasets was collected from experiments done on various combinations of governing parameters. The resultant equilibrium scour profile exhibited a symmetrical configuration resembling a semi-ellipsoidal shape. Notably, for the densimetric Forude number equal to or less than 5.8, a small central hump within the scour hole was seen. The investigation found that the optimal sediment removal efficiency was obtained when the C/D ratio was zero (where C is the suction inlet height and D is the suction pipe diameter) and with the highest densimetric Froude number. The sediment to water volume removal was highest in the initial few seconds, and reduced swiftly, followed by a subsequent smaller peak and gradually decreased to zero at equilibrium. Empirical equations for computing maximum scour depth, scour radius, and scour profile at equilibrium also were developed, which predict values within a commendable ±10% error range.
期刊介绍:
International Journal of Sediment Research, the Official Journal of The International Research and Training Center on Erosion and Sedimentation and The World Association for Sedimentation and Erosion Research, publishes scientific and technical papers on all aspects of erosion and sedimentation interpreted in its widest sense.
The subject matter is to include not only the mechanics of sediment transport and fluvial processes, but also what is related to geography, geomorphology, soil erosion, watershed management, sedimentology, environmental and ecological impacts of sedimentation, social and economical effects of sedimentation and its assessment, etc. Special attention is paid to engineering problems related to sedimentation and erosion.