随机对称矩阵的最小奇异值

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
Marcelo Campos, Matthew Jenssen, Marcus Michelen, Julian Sahasrabudhe
{"title":"随机对称矩阵的最小奇异值","authors":"Marcelo Campos, Matthew Jenssen, Marcus Michelen, Julian Sahasrabudhe","doi":"10.1017/fmp.2023.29","DOIUrl":null,"url":null,"abstract":"Let <jats:italic>A</jats:italic> be an <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S205050862300029X_inline1.png\" /> <jats:tex-math> $n \\times n$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> symmetric matrix with <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S205050862300029X_inline2.png\" /> <jats:tex-math> $(A_{i,j})_{i\\leqslant j}$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> independent and identically distributed according to a subgaussian distribution. We show that <jats:disp-formula> <jats:alternatives> <jats:graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S205050862300029X_eqnu1.png\" /> <jats:tex-math> $$ \\begin{align*}\\mathbb{P}(\\sigma_{\\min}(A) \\leqslant \\varepsilon n^{-1/2} ) \\leqslant C \\varepsilon + e^{-cn},\\end{align*} $$ </jats:tex-math> </jats:alternatives> </jats:disp-formula> where <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S205050862300029X_inline3.png\" /> <jats:tex-math> $\\sigma _{\\min }(A)$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> denotes the least singular value of <jats:italic>A</jats:italic> and the constants <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S205050862300029X_inline4.png\" /> <jats:tex-math> $C,c&gt;0 $ </jats:tex-math> </jats:alternatives> </jats:inline-formula> depend only on the distribution of the entries of <jats:italic>A</jats:italic>. This result confirms the folklore conjecture on the lower tail of the least singular value of such matrices and is best possible up to the dependence of the constants on the distribution of <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S205050862300029X_inline5.png\" /> <jats:tex-math> $A_{i,j}$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>. Along the way, we prove that the probability that <jats:italic>A</jats:italic> has a repeated eigenvalue is <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S205050862300029X_inline6.png\" /> <jats:tex-math> $e^{-\\Omega (n)}$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>, thus confirming a conjecture of Nguyen, Tao and Vu [<jats:italic>Probab. Theory Relat. Fields</jats:italic> 167 (2017), 777–816].","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The least singular value of a random symmetric matrix\",\"authors\":\"Marcelo Campos, Matthew Jenssen, Marcus Michelen, Julian Sahasrabudhe\",\"doi\":\"10.1017/fmp.2023.29\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let <jats:italic>A</jats:italic> be an <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S205050862300029X_inline1.png\\\" /> <jats:tex-math> $n \\\\times n$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> symmetric matrix with <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S205050862300029X_inline2.png\\\" /> <jats:tex-math> $(A_{i,j})_{i\\\\leqslant j}$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> independent and identically distributed according to a subgaussian distribution. We show that <jats:disp-formula> <jats:alternatives> <jats:graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S205050862300029X_eqnu1.png\\\" /> <jats:tex-math> $$ \\\\begin{align*}\\\\mathbb{P}(\\\\sigma_{\\\\min}(A) \\\\leqslant \\\\varepsilon n^{-1/2} ) \\\\leqslant C \\\\varepsilon + e^{-cn},\\\\end{align*} $$ </jats:tex-math> </jats:alternatives> </jats:disp-formula> where <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S205050862300029X_inline3.png\\\" /> <jats:tex-math> $\\\\sigma _{\\\\min }(A)$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> denotes the least singular value of <jats:italic>A</jats:italic> and the constants <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S205050862300029X_inline4.png\\\" /> <jats:tex-math> $C,c&gt;0 $ </jats:tex-math> </jats:alternatives> </jats:inline-formula> depend only on the distribution of the entries of <jats:italic>A</jats:italic>. This result confirms the folklore conjecture on the lower tail of the least singular value of such matrices and is best possible up to the dependence of the constants on the distribution of <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S205050862300029X_inline5.png\\\" /> <jats:tex-math> $A_{i,j}$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>. Along the way, we prove that the probability that <jats:italic>A</jats:italic> has a repeated eigenvalue is <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S205050862300029X_inline6.png\\\" /> <jats:tex-math> $e^{-\\\\Omega (n)}$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>, thus confirming a conjecture of Nguyen, Tao and Vu [<jats:italic>Probab. Theory Relat. Fields</jats:italic> 167 (2017), 777–816].\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-01-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1017/fmp.2023.29\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1017/fmp.2023.29","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

摘要

让 A 是一个 $n times n$ 的对称矩阵,其中 $(A_{i,j})_{i\leqslant j}$ 根据亚高斯分布独立且同分布。我们证明 $$ \begin{align*}\mathbb{P}(\sigma_{\min}(A) \leqslant \varepsilon n^{-1/2} )\leqslant C \varepsilon + e^{-cn},\end{align*}$$ 其中 $\sigma _{/min }(A)$ 表示 A 的最小奇异值,常数 $C,c>0 $ 仅取决于 A 的条目分布。这个结果证实了关于此类矩阵最小奇异值下限的民间猜想,并且是常数取决于 $A_{i,j}$ 分布的最佳可能。同时,我们证明了 A 具有重复特征值的概率为 $e^{-\Omega (n)}$ ,从而证实了 Nguyen、Tao 和 Vu 的猜想[Probab. Theory Relat. Fields 167 (2017), 777-816].
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The least singular value of a random symmetric matrix
Let A be an $n \times n$ symmetric matrix with $(A_{i,j})_{i\leqslant j}$ independent and identically distributed according to a subgaussian distribution. We show that $$ \begin{align*}\mathbb{P}(\sigma_{\min}(A) \leqslant \varepsilon n^{-1/2} ) \leqslant C \varepsilon + e^{-cn},\end{align*} $$ where $\sigma _{\min }(A)$ denotes the least singular value of A and the constants $C,c>0 $ depend only on the distribution of the entries of A. This result confirms the folklore conjecture on the lower tail of the least singular value of such matrices and is best possible up to the dependence of the constants on the distribution of $A_{i,j}$ . Along the way, we prove that the probability that A has a repeated eigenvalue is $e^{-\Omega (n)}$ , thus confirming a conjecture of Nguyen, Tao and Vu [Probab. Theory Relat. Fields 167 (2017), 777–816].
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信