Ananas comosus [L].栽培品种 Turiaçu 在离体培养系统中的光营养潜力和光合能力

IF 2.2 3区 生物学 Q4 CELL BIOLOGY
Givago Lopes Alves, Marcos Vinícius Marques Pinheiro, Tácila Rayene Marinho-Dutra, Karina da Silva Vieira, Fábio Afonso Mazzei Moura de Assis Figueiredo, Tiago Massi Ferraz, Eliemar Campostrini, José Domingos Cochicho Ramalho, Thais Roseli Corrêa, Fabrício de Oliveira Reis
{"title":"Ananas comosus [L].栽培品种 Turiaçu 在离体培养系统中的光营养潜力和光合能力","authors":"Givago Lopes Alves, Marcos Vinícius Marques Pinheiro, Tácila Rayene Marinho-Dutra, Karina da Silva Vieira, Fábio Afonso Mazzei Moura de Assis Figueiredo, Tiago Massi Ferraz, Eliemar Campostrini, José Domingos Cochicho Ramalho, Thais Roseli Corrêa, Fabrício de Oliveira Reis","doi":"10.1007/s11627-023-10410-z","DOIUrl":null,"url":null,"abstract":"<p>The Turiaçu pineapple cultivar produces fruits of high organoleptic value but has few biotechnological studies on seedling production. However, conventional <i>in vitro</i> propagation can affect the photosynthetic potential of plants when transferred to the field, thus mitigating measures should be undertaken to solve this limitation, for example by decreasing carbohydrate concentration in the growth medium, adopting bioreactors of temporary immersion with forced ventilation, and using gas permeable membranes in the culture flask. The present work focused on evaluating the growth and development of plantlets from <i>Ananas comosus</i> [L]. Merr. cultivar Turiaçu, an important but neglected pineapple cultivar, under different sucrose concentrations and cultivation systems. For that, the impact of the photomixotrophic and photoautotrophic growth on morphophysiological responses of plants and survival during the <i>ex vitro</i> acclimatization was assessed. The plants were grown in four cultivation systems: permanent immersion system with sealed flasks (PIS-SF); permanent immersion system with natural ventilation (PIS-NV); single-flask temporary immersion bioreactors (TIS-PF); and twin-flasks temporary immersion bioreactors (TIS-RALM), combined with sucrose concentrations (0, 5.0, 15.0, and 30.0 g L<sup>−1</sup>). The results indicate that Turiaçu plants have photoautotrophic potential <i>in vitro</i>, as the photochemical efficiency of the plants increased in cultivation systems with TIS –RALM gas exchange without the addition of sucrose. Furthermore, it also improved the performance and hardening of plants in <i>ex vitro</i> conditions, which constitutes a crucial step towards the diffusion of this cultivar.</p>","PeriodicalId":13293,"journal":{"name":"In Vitro Cellular & Developmental Biology - Plant","volume":"163 1","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2024-01-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Photoautotrophic potential and photosynthetic competence in Ananas comosus [L]. Merr. cultivar Turiaçu in in vitro culture systems\",\"authors\":\"Givago Lopes Alves, Marcos Vinícius Marques Pinheiro, Tácila Rayene Marinho-Dutra, Karina da Silva Vieira, Fábio Afonso Mazzei Moura de Assis Figueiredo, Tiago Massi Ferraz, Eliemar Campostrini, José Domingos Cochicho Ramalho, Thais Roseli Corrêa, Fabrício de Oliveira Reis\",\"doi\":\"10.1007/s11627-023-10410-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The Turiaçu pineapple cultivar produces fruits of high organoleptic value but has few biotechnological studies on seedling production. However, conventional <i>in vitro</i> propagation can affect the photosynthetic potential of plants when transferred to the field, thus mitigating measures should be undertaken to solve this limitation, for example by decreasing carbohydrate concentration in the growth medium, adopting bioreactors of temporary immersion with forced ventilation, and using gas permeable membranes in the culture flask. The present work focused on evaluating the growth and development of plantlets from <i>Ananas comosus</i> [L]. Merr. cultivar Turiaçu, an important but neglected pineapple cultivar, under different sucrose concentrations and cultivation systems. For that, the impact of the photomixotrophic and photoautotrophic growth on morphophysiological responses of plants and survival during the <i>ex vitro</i> acclimatization was assessed. The plants were grown in four cultivation systems: permanent immersion system with sealed flasks (PIS-SF); permanent immersion system with natural ventilation (PIS-NV); single-flask temporary immersion bioreactors (TIS-PF); and twin-flasks temporary immersion bioreactors (TIS-RALM), combined with sucrose concentrations (0, 5.0, 15.0, and 30.0 g L<sup>−1</sup>). The results indicate that Turiaçu plants have photoautotrophic potential <i>in vitro</i>, as the photochemical efficiency of the plants increased in cultivation systems with TIS –RALM gas exchange without the addition of sucrose. Furthermore, it also improved the performance and hardening of plants in <i>ex vitro</i> conditions, which constitutes a crucial step towards the diffusion of this cultivar.</p>\",\"PeriodicalId\":13293,\"journal\":{\"name\":\"In Vitro Cellular & Developmental Biology - Plant\",\"volume\":\"163 1\",\"pages\":\"\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2024-01-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"In Vitro Cellular & Developmental Biology - Plant\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1007/s11627-023-10410-z\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"In Vitro Cellular & Developmental Biology - Plant","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s11627-023-10410-z","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

图里亚库菠萝栽培品种生产的果实具有很高的感官价值,但有关其幼苗生产的生物技术研究却很少。然而,传统的体外繁殖方法在转移到田间时会影响植物的光合潜力,因此应采取缓解措施来解决这一限制,例如降低生长培养基中的碳水化合物浓度、采用强制通风的临时浸泡生物反应器以及在培养瓶中使用气体渗透膜。目前的工作重点是评估来自 Ananas comosus [L].Merr.栽培品种 Turiaçu(一种重要但被忽视的菠萝栽培品种)在不同蔗糖浓度和栽培系统下的生长发育情况。为此,在离体适应过程中,评估了光异养和光自养生长对植物形态生理反应和存活率的影响。植物在四种栽培系统中生长:带密封烧瓶的永久浸泡系统(PIS-SF);带自然通风的永久浸泡系统(PIS-NV);单烧瓶临时浸泡生物反应器(TIS-PF);双烧瓶临时浸泡生物反应器(TIS-RALM),并结合蔗糖浓度(0、5.0、15.0 和 30.0 g L-1)。结果表明,在不添加蔗糖的情况下,使用 TIS -RALM 气体交换的栽培系统中植物的光化学效率有所提高,因此都里阿苏植物在体外具有光自养潜力。此外,它还提高了植物在离体条件下的表现和硬化程度,这为该栽培品种的推广迈出了关键一步。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Photoautotrophic potential and photosynthetic competence in Ananas comosus [L]. Merr. cultivar Turiaçu in in vitro culture systems

Photoautotrophic potential and photosynthetic competence in Ananas comosus [L]. Merr. cultivar Turiaçu in in vitro culture systems

The Turiaçu pineapple cultivar produces fruits of high organoleptic value but has few biotechnological studies on seedling production. However, conventional in vitro propagation can affect the photosynthetic potential of plants when transferred to the field, thus mitigating measures should be undertaken to solve this limitation, for example by decreasing carbohydrate concentration in the growth medium, adopting bioreactors of temporary immersion with forced ventilation, and using gas permeable membranes in the culture flask. The present work focused on evaluating the growth and development of plantlets from Ananas comosus [L]. Merr. cultivar Turiaçu, an important but neglected pineapple cultivar, under different sucrose concentrations and cultivation systems. For that, the impact of the photomixotrophic and photoautotrophic growth on morphophysiological responses of plants and survival during the ex vitro acclimatization was assessed. The plants were grown in four cultivation systems: permanent immersion system with sealed flasks (PIS-SF); permanent immersion system with natural ventilation (PIS-NV); single-flask temporary immersion bioreactors (TIS-PF); and twin-flasks temporary immersion bioreactors (TIS-RALM), combined with sucrose concentrations (0, 5.0, 15.0, and 30.0 g L−1). The results indicate that Turiaçu plants have photoautotrophic potential in vitro, as the photochemical efficiency of the plants increased in cultivation systems with TIS –RALM gas exchange without the addition of sucrose. Furthermore, it also improved the performance and hardening of plants in ex vitro conditions, which constitutes a crucial step towards the diffusion of this cultivar.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
5.00
自引率
7.70%
发文量
71
审稿时长
6-12 weeks
期刊介绍: Founded in 1965, In Vitro Cellular & Developmental Biology - Plant is the only journal devoted solely to worldwide coverage of in vitro biology in plants. Its high-caliber original research and reviews make it required reading for anyone who needs comprehensive coverage of the latest developments and state-of-the-art research in plant cell and tissue culture and biotechnology from around the world.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信