{"title":"利用 GPU 高效出口预测加速 BERT 推断","authors":"","doi":"10.1007/s11704-022-2341-9","DOIUrl":null,"url":null,"abstract":"<h3>Abstract</h3> <p>BERT is a representative pre-trained language model that has drawn extensive attention for significant improvements in downstream Natural Language Processing (NLP) tasks. The complex architecture and massive parameters bring BERT competitive performance but also result in slow speed at model inference time. To speed up BERT inference, FastBERT realizes adaptive inference with an acceptable drop in accuracy based on knowledge distillation and the early-exit technique. However, many factors may limit the performance of FastBERT, such as the teacher classifier that is not knowledgeable enough, the batch size shrinkage and the redundant computation of student classifiers. To overcome these limitations, we propose a new BERT inference method with GPU-Efficient Exit Prediction (GEEP). GEEP leverages the <em>shared exit loss</em> to simplify the training process of FastBERT from two steps into only one step and makes the teacher classifier more knowledgeable by feeding diverse Transformer outputs to the teacher classifier. In addition, the <em>exit layer prediction</em> technique is proposed to utilize a GPU hash table to handle the token-level exit layer distribution and to sort test samples by predicted exit layers. In this way, GEEP can avoid batch size shrinkage and redundant computation of student classifiers. Experimental results on twelve public English and Chinese NLP datasets prove the effectiveness of the proposed approach. The source codes of GEEP will be released to the public upon paper acceptance.</p>","PeriodicalId":12640,"journal":{"name":"Frontiers of Computer Science","volume":"58 3 1","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2024-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Accelerating BERT inference with GPU-efficient exit prediction\",\"authors\":\"\",\"doi\":\"10.1007/s11704-022-2341-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<h3>Abstract</h3> <p>BERT is a representative pre-trained language model that has drawn extensive attention for significant improvements in downstream Natural Language Processing (NLP) tasks. The complex architecture and massive parameters bring BERT competitive performance but also result in slow speed at model inference time. To speed up BERT inference, FastBERT realizes adaptive inference with an acceptable drop in accuracy based on knowledge distillation and the early-exit technique. However, many factors may limit the performance of FastBERT, such as the teacher classifier that is not knowledgeable enough, the batch size shrinkage and the redundant computation of student classifiers. To overcome these limitations, we propose a new BERT inference method with GPU-Efficient Exit Prediction (GEEP). GEEP leverages the <em>shared exit loss</em> to simplify the training process of FastBERT from two steps into only one step and makes the teacher classifier more knowledgeable by feeding diverse Transformer outputs to the teacher classifier. In addition, the <em>exit layer prediction</em> technique is proposed to utilize a GPU hash table to handle the token-level exit layer distribution and to sort test samples by predicted exit layers. In this way, GEEP can avoid batch size shrinkage and redundant computation of student classifiers. Experimental results on twelve public English and Chinese NLP datasets prove the effectiveness of the proposed approach. The source codes of GEEP will be released to the public upon paper acceptance.</p>\",\"PeriodicalId\":12640,\"journal\":{\"name\":\"Frontiers of Computer Science\",\"volume\":\"58 3 1\",\"pages\":\"\"},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2024-01-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Frontiers of Computer Science\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1007/s11704-022-2341-9\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers of Computer Science","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s11704-022-2341-9","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
Accelerating BERT inference with GPU-efficient exit prediction
Abstract
BERT is a representative pre-trained language model that has drawn extensive attention for significant improvements in downstream Natural Language Processing (NLP) tasks. The complex architecture and massive parameters bring BERT competitive performance but also result in slow speed at model inference time. To speed up BERT inference, FastBERT realizes adaptive inference with an acceptable drop in accuracy based on knowledge distillation and the early-exit technique. However, many factors may limit the performance of FastBERT, such as the teacher classifier that is not knowledgeable enough, the batch size shrinkage and the redundant computation of student classifiers. To overcome these limitations, we propose a new BERT inference method with GPU-Efficient Exit Prediction (GEEP). GEEP leverages the shared exit loss to simplify the training process of FastBERT from two steps into only one step and makes the teacher classifier more knowledgeable by feeding diverse Transformer outputs to the teacher classifier. In addition, the exit layer prediction technique is proposed to utilize a GPU hash table to handle the token-level exit layer distribution and to sort test samples by predicted exit layers. In this way, GEEP can avoid batch size shrinkage and redundant computation of student classifiers. Experimental results on twelve public English and Chinese NLP datasets prove the effectiveness of the proposed approach. The source codes of GEEP will be released to the public upon paper acceptance.
期刊介绍:
Frontiers of Computer Science aims to provide a forum for the publication of peer-reviewed papers to promote rapid communication and exchange between computer scientists. The journal publishes research papers and review articles in a wide range of topics, including: architecture, software, artificial intelligence, theoretical computer science, networks and communication, information systems, multimedia and graphics, information security, interdisciplinary, etc. The journal especially encourages papers from new emerging and multidisciplinary areas, as well as papers reflecting the international trends of research and development and on special topics reporting progress made by Chinese computer scientists.