连续 CM 规则性和通用消失

IF 0.5 4区 数学 Q3 MATHEMATICS
Debaditya Raychaudhury
{"title":"连续 CM 规则性和通用消失","authors":"Debaditya Raychaudhury","doi":"10.1515/advgeom-2023-0028","DOIUrl":null,"url":null,"abstract":"We study the continuous CM-regularity of torsion-free coherent sheaves on polarized irregular smooth projective varieties (<jats:italic>X</jats:italic>, O<jats:italic> <jats:sub>X</jats:sub> </jats:italic>(1)), and its relation with the theory of generic vanishing. This continuous variant of the Castelnuovo–Mumford regularity was introduced by Mustopa, and he raised the question whether a continuously 1-regular such sheaf F is GV. Here we answer the question in the affirmative for many pairs (<jats:italic>X</jats:italic>, O<jats:italic> <jats:sub>X</jats:sub> </jats:italic>(1)) which includes the case of any polarized abelian variety. Moreover, for these pairs, we show that if F is continuously <jats:italic>k</jats:italic>-regular for some positive integer <jats:italic>k</jats:italic> ≤ dim <jats:italic>X</jats:italic>, then F is a GV<jats:sub>−(<jats:italic>k</jats:italic>−1)</jats:sub> sheaf. Further, we extend the notion of continuous CM-regularity to a real valued function on the ℚ-twisted bundles on polarized abelian varieties (<jats:italic>X</jats:italic>, O<jats:italic> <jats:sub>X</jats:sub> </jats:italic>(1)), and we show that this function can be extended to a continuous function on <jats:italic>N</jats:italic> <jats:sup>1</jats:sup>(<jats:italic>X</jats:italic>)<jats:sub>ℝ</jats:sub>. We also provide syzygetic consequences of our results for O<jats:sub>ℙ(E)</jats:sub>(1) on ℙ(ɛ) associated to a 0-regular bundle ɛ on polarized abelian varieties. In particular, we show that O<jats:sub>ℙ(E)</jats:sub>(1) satisfies the <jats:italic>N<jats:sub>p</jats:sub> </jats:italic> property if the base-point freeness threshold of the class of O<jats:italic> <jats:sub>X</jats:sub> </jats:italic>(1) in <jats:italic>N</jats:italic> <jats:sup>1</jats:sup>(<jats:italic>X</jats:italic>) is less than 1/(<jats:italic>p</jats:italic> + 2). This result is obtained using a theorem in the Appendix A written by Atsushi Ito.","PeriodicalId":7335,"journal":{"name":"Advances in Geometry","volume":"2 1","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2024-01-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Continuous CM-regularity and generic vanishing\",\"authors\":\"Debaditya Raychaudhury\",\"doi\":\"10.1515/advgeom-2023-0028\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We study the continuous CM-regularity of torsion-free coherent sheaves on polarized irregular smooth projective varieties (<jats:italic>X</jats:italic>, O<jats:italic> <jats:sub>X</jats:sub> </jats:italic>(1)), and its relation with the theory of generic vanishing. This continuous variant of the Castelnuovo–Mumford regularity was introduced by Mustopa, and he raised the question whether a continuously 1-regular such sheaf F is GV. Here we answer the question in the affirmative for many pairs (<jats:italic>X</jats:italic>, O<jats:italic> <jats:sub>X</jats:sub> </jats:italic>(1)) which includes the case of any polarized abelian variety. Moreover, for these pairs, we show that if F is continuously <jats:italic>k</jats:italic>-regular for some positive integer <jats:italic>k</jats:italic> ≤ dim <jats:italic>X</jats:italic>, then F is a GV<jats:sub>−(<jats:italic>k</jats:italic>−1)</jats:sub> sheaf. Further, we extend the notion of continuous CM-regularity to a real valued function on the ℚ-twisted bundles on polarized abelian varieties (<jats:italic>X</jats:italic>, O<jats:italic> <jats:sub>X</jats:sub> </jats:italic>(1)), and we show that this function can be extended to a continuous function on <jats:italic>N</jats:italic> <jats:sup>1</jats:sup>(<jats:italic>X</jats:italic>)<jats:sub>ℝ</jats:sub>. We also provide syzygetic consequences of our results for O<jats:sub>ℙ(E)</jats:sub>(1) on ℙ(ɛ) associated to a 0-regular bundle ɛ on polarized abelian varieties. In particular, we show that O<jats:sub>ℙ(E)</jats:sub>(1) satisfies the <jats:italic>N<jats:sub>p</jats:sub> </jats:italic> property if the base-point freeness threshold of the class of O<jats:italic> <jats:sub>X</jats:sub> </jats:italic>(1) in <jats:italic>N</jats:italic> <jats:sup>1</jats:sup>(<jats:italic>X</jats:italic>) is less than 1/(<jats:italic>p</jats:italic> + 2). This result is obtained using a theorem in the Appendix A written by Atsushi Ito.\",\"PeriodicalId\":7335,\"journal\":{\"name\":\"Advances in Geometry\",\"volume\":\"2 1\",\"pages\":\"\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2024-01-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Geometry\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1515/advgeom-2023-0028\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Geometry","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/advgeom-2023-0028","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

我们研究极化不规则光滑投影变项 (X, O X (1)) 上无扭相干剪切的连续 CM 正则性及其与泛型消失理论的关系。这种卡斯特诺沃-芒福德正则性的连续变体是由穆斯托帕引入的,他提出了这样一个问题:连续 1-regular 的剪切 F 是否是 GV?在这里,我们对许多对(X, O X (1))给出了肯定的回答,其中包括任何极化无性杂交的情况。此外,对于这些对子,我们证明了如果 F 对于某个正整数 k ≤ dim X 是连续 k-regular 的,那么 F 就是 GV-(k-1) sheaf。此外,我们将连续 CM-regularity 的概念扩展到极化无性变体 (X, O X (1)) 上的ℚ扭曲束上的实值函数,并证明该函数可以扩展为 N 1(X)ℝ 上的连续函数。我们还提供了与极化无常变体上的 0 规则束ɛ相关联的ℙ(ɛ) 上 Oℙ(E)(1) 的协同结果。我们特别指出,如果 N 1(X) 中 O X (1) 类的基点自由阈值小于 1/(p + 2),则 Oℙ(E)(1) 满足 Np 特性。这一结果是通过伊藤敦撰写的附录 A 中的一个定理得到的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Continuous CM-regularity and generic vanishing
We study the continuous CM-regularity of torsion-free coherent sheaves on polarized irregular smooth projective varieties (X, O X (1)), and its relation with the theory of generic vanishing. This continuous variant of the Castelnuovo–Mumford regularity was introduced by Mustopa, and he raised the question whether a continuously 1-regular such sheaf F is GV. Here we answer the question in the affirmative for many pairs (X, O X (1)) which includes the case of any polarized abelian variety. Moreover, for these pairs, we show that if F is continuously k-regular for some positive integer k ≤ dim X, then F is a GV−(k−1) sheaf. Further, we extend the notion of continuous CM-regularity to a real valued function on the ℚ-twisted bundles on polarized abelian varieties (X, O X (1)), and we show that this function can be extended to a continuous function on N 1(X). We also provide syzygetic consequences of our results for Oℙ(E)(1) on ℙ(ɛ) associated to a 0-regular bundle ɛ on polarized abelian varieties. In particular, we show that Oℙ(E)(1) satisfies the Np property if the base-point freeness threshold of the class of O X (1) in N 1(X) is less than 1/(p + 2). This result is obtained using a theorem in the Appendix A written by Atsushi Ito.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Advances in Geometry
Advances in Geometry 数学-数学
CiteScore
1.00
自引率
0.00%
发文量
31
审稿时长
>12 weeks
期刊介绍: Advances in Geometry is a mathematical journal for the publication of original research articles of excellent quality in the area of geometry. Geometry is a field of long standing-tradition and eminent importance. The study of space and spatial patterns is a major mathematical activity; geometric ideas and geometric language permeate all of mathematics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信