达到塞雷边界的 6 和 10 属新六次体

IF 0.5 4区 数学 Q3 MATHEMATICS
Annamaria Iezzi, Motoko Qiu Kawakita, Marco Timpanella
{"title":"达到塞雷边界的 6 和 10 属新六次体","authors":"Annamaria Iezzi, Motoko Qiu Kawakita, Marco Timpanella","doi":"10.1515/advgeom-2023-0031","DOIUrl":null,"url":null,"abstract":"We provide new examples of curves of genus 6 or 10 attaining the Serre bound. They all belong to the family of sextics introduced in [19] as a generalization of Wiman’s sextics [38] and Edge’s sextics [9]. Our approach is based on a theorem by Kani and Rosen which allows, under certain assumptions, to fully decompose the Jacobian of the curve. With our investigation we are able to update several entries in the table <jats:ext-link xmlns:xlink=\"http://www.w3.org/1999/xlink\" ext-link-type=\"uri\" xlink:href=\"http://www.manypoints.org\">www.manypoints.org</jats:ext-link>, see [37].","PeriodicalId":7335,"journal":{"name":"Advances in Geometry","volume":"6 1","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2024-01-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"New sextics of genus 6 and 10 attaining the Serre bound\",\"authors\":\"Annamaria Iezzi, Motoko Qiu Kawakita, Marco Timpanella\",\"doi\":\"10.1515/advgeom-2023-0031\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We provide new examples of curves of genus 6 or 10 attaining the Serre bound. They all belong to the family of sextics introduced in [19] as a generalization of Wiman’s sextics [38] and Edge’s sextics [9]. Our approach is based on a theorem by Kani and Rosen which allows, under certain assumptions, to fully decompose the Jacobian of the curve. With our investigation we are able to update several entries in the table <jats:ext-link xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" ext-link-type=\\\"uri\\\" xlink:href=\\\"http://www.manypoints.org\\\">www.manypoints.org</jats:ext-link>, see [37].\",\"PeriodicalId\":7335,\"journal\":{\"name\":\"Advances in Geometry\",\"volume\":\"6 1\",\"pages\":\"\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2024-01-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Geometry\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1515/advgeom-2023-0031\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Geometry","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/advgeom-2023-0031","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

我们提供了属 6 或属 10 的曲线达到塞雷约束的新例子。它们都属于[19]中介绍的六次方程组,是对 Wiman 的六次方程组[38]和 Edge 的六次方程组[9]的推广。我们的方法基于 Kani 和 Rosen 的一个定理,该定理允许在某些假设条件下完全分解曲线的雅各布。通过我们的研究,我们可以更新表 www.manypoints.org 中的几个条目,参见 [37]。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
New sextics of genus 6 and 10 attaining the Serre bound
We provide new examples of curves of genus 6 or 10 attaining the Serre bound. They all belong to the family of sextics introduced in [19] as a generalization of Wiman’s sextics [38] and Edge’s sextics [9]. Our approach is based on a theorem by Kani and Rosen which allows, under certain assumptions, to fully decompose the Jacobian of the curve. With our investigation we are able to update several entries in the table www.manypoints.org, see [37].
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Advances in Geometry
Advances in Geometry 数学-数学
CiteScore
1.00
自引率
0.00%
发文量
31
审稿时长
>12 weeks
期刊介绍: Advances in Geometry is a mathematical journal for the publication of original research articles of excellent quality in the area of geometry. Geometry is a field of long standing-tradition and eminent importance. The study of space and spatial patterns is a major mathematical activity; geometric ideas and geometric language permeate all of mathematics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信