Annamaria Iezzi, Motoko Qiu Kawakita, Marco Timpanella
{"title":"达到塞雷边界的 6 和 10 属新六次体","authors":"Annamaria Iezzi, Motoko Qiu Kawakita, Marco Timpanella","doi":"10.1515/advgeom-2023-0031","DOIUrl":null,"url":null,"abstract":"We provide new examples of curves of genus 6 or 10 attaining the Serre bound. They all belong to the family of sextics introduced in [19] as a generalization of Wiman’s sextics [38] and Edge’s sextics [9]. Our approach is based on a theorem by Kani and Rosen which allows, under certain assumptions, to fully decompose the Jacobian of the curve. With our investigation we are able to update several entries in the table <jats:ext-link xmlns:xlink=\"http://www.w3.org/1999/xlink\" ext-link-type=\"uri\" xlink:href=\"http://www.manypoints.org\">www.manypoints.org</jats:ext-link>, see [37].","PeriodicalId":7335,"journal":{"name":"Advances in Geometry","volume":"6 1","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2024-01-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"New sextics of genus 6 and 10 attaining the Serre bound\",\"authors\":\"Annamaria Iezzi, Motoko Qiu Kawakita, Marco Timpanella\",\"doi\":\"10.1515/advgeom-2023-0031\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We provide new examples of curves of genus 6 or 10 attaining the Serre bound. They all belong to the family of sextics introduced in [19] as a generalization of Wiman’s sextics [38] and Edge’s sextics [9]. Our approach is based on a theorem by Kani and Rosen which allows, under certain assumptions, to fully decompose the Jacobian of the curve. With our investigation we are able to update several entries in the table <jats:ext-link xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" ext-link-type=\\\"uri\\\" xlink:href=\\\"http://www.manypoints.org\\\">www.manypoints.org</jats:ext-link>, see [37].\",\"PeriodicalId\":7335,\"journal\":{\"name\":\"Advances in Geometry\",\"volume\":\"6 1\",\"pages\":\"\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2024-01-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Geometry\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1515/advgeom-2023-0031\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Geometry","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/advgeom-2023-0031","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
New sextics of genus 6 and 10 attaining the Serre bound
We provide new examples of curves of genus 6 or 10 attaining the Serre bound. They all belong to the family of sextics introduced in [19] as a generalization of Wiman’s sextics [38] and Edge’s sextics [9]. Our approach is based on a theorem by Kani and Rosen which allows, under certain assumptions, to fully decompose the Jacobian of the curve. With our investigation we are able to update several entries in the table www.manypoints.org, see [37].
期刊介绍:
Advances in Geometry is a mathematical journal for the publication of original research articles of excellent quality in the area of geometry. Geometry is a field of long standing-tradition and eminent importance. The study of space and spatial patterns is a major mathematical activity; geometric ideas and geometric language permeate all of mathematics.