关于具有高内啡肽值的极化品种的说明

IF 0.5 4区 数学 Q3 MATHEMATICS
Zhining Liu
{"title":"关于具有高内啡肽值的极化品种的说明","authors":"Zhining Liu","doi":"10.1515/advgeom-2023-0030","DOIUrl":null,"url":null,"abstract":"We study the classification problem for polarized varieties with high nef value. We give a complete list of isomorphism classes for normal polarized varieties with high nef value. This generalizes classical work on the smooth case by Fujita, Beltrametti and Sommese. As a consequence we obtain that polarized varieties with slc singularities and high nef value are birationally equivalent to projective bundles over nodal curves.","PeriodicalId":7335,"journal":{"name":"Advances in Geometry","volume":null,"pages":null},"PeriodicalIF":0.5000,"publicationDate":"2024-01-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A note on polarized varieties with high nef value\",\"authors\":\"Zhining Liu\",\"doi\":\"10.1515/advgeom-2023-0030\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We study the classification problem for polarized varieties with high nef value. We give a complete list of isomorphism classes for normal polarized varieties with high nef value. This generalizes classical work on the smooth case by Fujita, Beltrametti and Sommese. As a consequence we obtain that polarized varieties with slc singularities and high nef value are birationally equivalent to projective bundles over nodal curves.\",\"PeriodicalId\":7335,\"journal\":{\"name\":\"Advances in Geometry\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2024-01-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Geometry\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1515/advgeom-2023-0030\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Geometry","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/advgeom-2023-0030","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

我们研究了高内夫值极化变体的分类问题。我们给出了具有高 nef 值的正极化子的同构类的完整列表。这概括了藤田、贝尔特拉梅蒂和索梅塞在光滑情况下的经典工作。因此,我们得到了具有 slc 奇异性和高 nef 值的极化 varieties 在双向上等价于节点曲线上的射影束。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A note on polarized varieties with high nef value
We study the classification problem for polarized varieties with high nef value. We give a complete list of isomorphism classes for normal polarized varieties with high nef value. This generalizes classical work on the smooth case by Fujita, Beltrametti and Sommese. As a consequence we obtain that polarized varieties with slc singularities and high nef value are birationally equivalent to projective bundles over nodal curves.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Advances in Geometry
Advances in Geometry 数学-数学
CiteScore
1.00
自引率
0.00%
发文量
31
审稿时长
>12 weeks
期刊介绍: Advances in Geometry is a mathematical journal for the publication of original research articles of excellent quality in the area of geometry. Geometry is a field of long standing-tradition and eminent importance. The study of space and spatial patterns is a major mathematical activity; geometric ideas and geometric language permeate all of mathematics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信