{"title":"通过整合移动机器人辅助系统促进医院发展:应对风险的全面分类","authors":"Lukas Bernhard, Patrik Schwingenschlögl, Jörg Hofmann, Dirk Wilhelm, Alois Knoll","doi":"10.1007/s10514-023-10154-0","DOIUrl":null,"url":null,"abstract":"<div><p>Mobile service robots are a promising technology for supporting workflows throughout the hospital. Combined with an understanding of the environment and the current situation, such systems have the potential to become invaluable tools for overcoming personal shortages and streamlining healthcare workflows. However, few robotic systems have actually been translated to practical application so far, which is due to many challenges centered around the strict and unique requirements imposed by the different hospital environments, which have not yet been collected and analyzed in a structured manner. To address this need, we now present a comprehensive classification of different dimensions of risk to be considered when designing mobile service robots for the hospital. Our classification consists of six risk categories – environmental complexity, hygienic requirements, interaction with persons and objects, workflow flexibility and autonomy – for each of which a scale with distinct risk levels is provided. This concept, for the first time allows for a precise classification of mobile service robots for the hospital, which can prove useful for certification and admission procedures as well as for defining architectural and safety requirements throughout the design process of such robots.</p></div>","PeriodicalId":55409,"journal":{"name":"Autonomous Robots","volume":"48 1","pages":""},"PeriodicalIF":3.7000,"publicationDate":"2024-01-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10514-023-10154-0.pdf","citationCount":"0","resultStr":"{\"title\":\"Boosting the hospital by integrating mobile robotic assistance systems: a comprehensive classification of the risks to be addressed\",\"authors\":\"Lukas Bernhard, Patrik Schwingenschlögl, Jörg Hofmann, Dirk Wilhelm, Alois Knoll\",\"doi\":\"10.1007/s10514-023-10154-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Mobile service robots are a promising technology for supporting workflows throughout the hospital. Combined with an understanding of the environment and the current situation, such systems have the potential to become invaluable tools for overcoming personal shortages and streamlining healthcare workflows. However, few robotic systems have actually been translated to practical application so far, which is due to many challenges centered around the strict and unique requirements imposed by the different hospital environments, which have not yet been collected and analyzed in a structured manner. To address this need, we now present a comprehensive classification of different dimensions of risk to be considered when designing mobile service robots for the hospital. Our classification consists of six risk categories – environmental complexity, hygienic requirements, interaction with persons and objects, workflow flexibility and autonomy – for each of which a scale with distinct risk levels is provided. This concept, for the first time allows for a precise classification of mobile service robots for the hospital, which can prove useful for certification and admission procedures as well as for defining architectural and safety requirements throughout the design process of such robots.</p></div>\",\"PeriodicalId\":55409,\"journal\":{\"name\":\"Autonomous Robots\",\"volume\":\"48 1\",\"pages\":\"\"},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2024-01-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s10514-023-10154-0.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Autonomous Robots\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10514-023-10154-0\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Autonomous Robots","FirstCategoryId":"94","ListUrlMain":"https://link.springer.com/article/10.1007/s10514-023-10154-0","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
Boosting the hospital by integrating mobile robotic assistance systems: a comprehensive classification of the risks to be addressed
Mobile service robots are a promising technology for supporting workflows throughout the hospital. Combined with an understanding of the environment and the current situation, such systems have the potential to become invaluable tools for overcoming personal shortages and streamlining healthcare workflows. However, few robotic systems have actually been translated to practical application so far, which is due to many challenges centered around the strict and unique requirements imposed by the different hospital environments, which have not yet been collected and analyzed in a structured manner. To address this need, we now present a comprehensive classification of different dimensions of risk to be considered when designing mobile service robots for the hospital. Our classification consists of six risk categories – environmental complexity, hygienic requirements, interaction with persons and objects, workflow flexibility and autonomy – for each of which a scale with distinct risk levels is provided. This concept, for the first time allows for a precise classification of mobile service robots for the hospital, which can prove useful for certification and admission procedures as well as for defining architectural and safety requirements throughout the design process of such robots.
期刊介绍:
Autonomous Robots reports on the theory and applications of robotic systems capable of some degree of self-sufficiency. It features papers that include performance data on actual robots in the real world. Coverage includes: control of autonomous robots · real-time vision · autonomous wheeled and tracked vehicles · legged vehicles · computational architectures for autonomous systems · distributed architectures for learning, control and adaptation · studies of autonomous robot systems · sensor fusion · theory of autonomous systems · terrain mapping and recognition · self-calibration and self-repair for robots · self-reproducing intelligent structures · genetic algorithms as models for robot development.
The focus is on the ability to move and be self-sufficient, not on whether the system is an imitation of biology. Of course, biological models for robotic systems are of major interest to the journal since living systems are prototypes for autonomous behavior.