{"title":"具有优化的高原容量和速率能力的 MOF 衍生多孔石墨碳,适用于高性能锂离子电容器","authors":"","doi":"10.1007/s12613-023-2726-2","DOIUrl":null,"url":null,"abstract":"<h3>Abstract</h3> <p>The development of anode materials with high rate capability and long charge–discharge plateau is the key to improve performance of lithium-ion capacitors (LICs). Herein, the porous graphitic carbon (PGC-1300) derived from a new triply interpenetrated cobalt metal-organic framework (Co-MOF) was prepared through the facile and robust carbonization at 1300°C and washing by HCl solution. The as-prepared PGC-1300 featured an optimized graphitization degree and porous framework, which not only contributes to high plateau capacity (105.0 mAh·g<sup>−1</sup> below 0.2 V at 0.05 A·g<sup>−1</sup>), but also supplies more convenient pathways for ions and increases the rate capability (128.5 mAh·g<sup>−1</sup> at 3.2 A·g<sup>−1</sup>). According to the kinetics analyses, it can be found that diffusion regulated surface induced capacitive process and Li-ions intercalation process are coexisted for lithium-ion storage. Additionally, LIC PGC-1300//AC constructed with pre-lithiated PGC-1300 anode and activated carbon (AC) cathode exhibited an increased energy density of 102.8 Wh·kg<sup>−1</sup>, a power density of 6017.1 W·kg<sup>−1</sup>, together with the excellent cyclic stability (91.6% retention after 10000 cycles at 1.0 A·g<sup>−1</sup>).</p>","PeriodicalId":14030,"journal":{"name":"International Journal of Minerals, Metallurgy, and Materials","volume":"101 1","pages":""},"PeriodicalIF":5.6000,"publicationDate":"2024-01-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"MOF-derived porous graphitic carbon with optimized plateau capacity and rate capability for high performance lithium-ion capacitors\",\"authors\":\"\",\"doi\":\"10.1007/s12613-023-2726-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<h3>Abstract</h3> <p>The development of anode materials with high rate capability and long charge–discharge plateau is the key to improve performance of lithium-ion capacitors (LICs). Herein, the porous graphitic carbon (PGC-1300) derived from a new triply interpenetrated cobalt metal-organic framework (Co-MOF) was prepared through the facile and robust carbonization at 1300°C and washing by HCl solution. The as-prepared PGC-1300 featured an optimized graphitization degree and porous framework, which not only contributes to high plateau capacity (105.0 mAh·g<sup>−1</sup> below 0.2 V at 0.05 A·g<sup>−1</sup>), but also supplies more convenient pathways for ions and increases the rate capability (128.5 mAh·g<sup>−1</sup> at 3.2 A·g<sup>−1</sup>). According to the kinetics analyses, it can be found that diffusion regulated surface induced capacitive process and Li-ions intercalation process are coexisted for lithium-ion storage. Additionally, LIC PGC-1300//AC constructed with pre-lithiated PGC-1300 anode and activated carbon (AC) cathode exhibited an increased energy density of 102.8 Wh·kg<sup>−1</sup>, a power density of 6017.1 W·kg<sup>−1</sup>, together with the excellent cyclic stability (91.6% retention after 10000 cycles at 1.0 A·g<sup>−1</sup>).</p>\",\"PeriodicalId\":14030,\"journal\":{\"name\":\"International Journal of Minerals, Metallurgy, and Materials\",\"volume\":\"101 1\",\"pages\":\"\"},\"PeriodicalIF\":5.6000,\"publicationDate\":\"2024-01-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Minerals, Metallurgy, and Materials\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1007/s12613-023-2726-2\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Minerals, Metallurgy, and Materials","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s12613-023-2726-2","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
MOF-derived porous graphitic carbon with optimized plateau capacity and rate capability for high performance lithium-ion capacitors
Abstract
The development of anode materials with high rate capability and long charge–discharge plateau is the key to improve performance of lithium-ion capacitors (LICs). Herein, the porous graphitic carbon (PGC-1300) derived from a new triply interpenetrated cobalt metal-organic framework (Co-MOF) was prepared through the facile and robust carbonization at 1300°C and washing by HCl solution. The as-prepared PGC-1300 featured an optimized graphitization degree and porous framework, which not only contributes to high plateau capacity (105.0 mAh·g−1 below 0.2 V at 0.05 A·g−1), but also supplies more convenient pathways for ions and increases the rate capability (128.5 mAh·g−1 at 3.2 A·g−1). According to the kinetics analyses, it can be found that diffusion regulated surface induced capacitive process and Li-ions intercalation process are coexisted for lithium-ion storage. Additionally, LIC PGC-1300//AC constructed with pre-lithiated PGC-1300 anode and activated carbon (AC) cathode exhibited an increased energy density of 102.8 Wh·kg−1, a power density of 6017.1 W·kg−1, together with the excellent cyclic stability (91.6% retention after 10000 cycles at 1.0 A·g−1).
期刊介绍:
International Journal of Minerals, Metallurgy and Materials (Formerly known as Journal of University of Science and Technology Beijing, Mineral, Metallurgy, Material) provides an international medium for the publication of theoretical and experimental studies related to the fields of Minerals, Metallurgy and Materials. Papers dealing with minerals processing, mining, mine safety, environmental pollution and protection of mines, process metallurgy, metallurgical physical chemistry, structure and physical properties of materials, corrosion and resistance of materials, are viewed as suitable for publication.