Ling Che, Zhaowen Hu, Tao Zhang, Peiming Dai, Chengyu Chen, Chao Shen, Haitao Huang, Lifang Jiao, Ting Jin, Keyu Xie
{"title":"调节低温锂离子电池醋酸乙酯基电解液中石墨的界面化学性质","authors":"Ling Che, Zhaowen Hu, Tao Zhang, Peiming Dai, Chengyu Chen, Chao Shen, Haitao Huang, Lifang Jiao, Ting Jin, Keyu Xie","doi":"10.1002/bte2.20230064","DOIUrl":null,"url":null,"abstract":"<p>Lithium-ion batteries suffer from severe capacity loss and even fail to work under subzero temperatures, which is mainly due to the sluggish Li<sup>+</sup> transportation in the solid electrolyte interphase (SEI) and desolvation process. Ethyl acetate (EA) is a highly promising solvent for low-temperature electrolytes, yet it has poor compatibility with graphite (Gr) anode. Here, we tuned the interfacial chemistry of EA-based electrolytes via synergies of anions. ODFB<sup>−</sup> with low solvation numbers, participates in the solvation sheath, significantly reducing the desolvation energy. Meanwhile, combined with the high dissociation of FSI<sup>−</sup>, the reduction of both anions constructs an inorganic-rich SEI to improve interfacial stability. The electrolyte enables Gr anode to deliver a capacity of 293 mA h g<sup>−1</sup> and 2.5 Ah LiFePO<sub>4</sub>||Gr pouch cell to exhibit 96.85% capacity retention at −20°C. Remarkably, LiFePO<sub>4</sub>||Gr pouch cell with the designed electrolyte can still retain 66.28% of its room-temperature capacity even at −40°C.</p>","PeriodicalId":8807,"journal":{"name":"Battery Energy","volume":"3 3","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/bte2.20230064","citationCount":"0","resultStr":"{\"title\":\"Regulating the interfacial chemistry of graphite in ethyl acetate-based electrolyte for low-temperature Li-ion batteries\",\"authors\":\"Ling Che, Zhaowen Hu, Tao Zhang, Peiming Dai, Chengyu Chen, Chao Shen, Haitao Huang, Lifang Jiao, Ting Jin, Keyu Xie\",\"doi\":\"10.1002/bte2.20230064\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Lithium-ion batteries suffer from severe capacity loss and even fail to work under subzero temperatures, which is mainly due to the sluggish Li<sup>+</sup> transportation in the solid electrolyte interphase (SEI) and desolvation process. Ethyl acetate (EA) is a highly promising solvent for low-temperature electrolytes, yet it has poor compatibility with graphite (Gr) anode. Here, we tuned the interfacial chemistry of EA-based electrolytes via synergies of anions. ODFB<sup>−</sup> with low solvation numbers, participates in the solvation sheath, significantly reducing the desolvation energy. Meanwhile, combined with the high dissociation of FSI<sup>−</sup>, the reduction of both anions constructs an inorganic-rich SEI to improve interfacial stability. The electrolyte enables Gr anode to deliver a capacity of 293 mA h g<sup>−1</sup> and 2.5 Ah LiFePO<sub>4</sub>||Gr pouch cell to exhibit 96.85% capacity retention at −20°C. Remarkably, LiFePO<sub>4</sub>||Gr pouch cell with the designed electrolyte can still retain 66.28% of its room-temperature capacity even at −40°C.</p>\",\"PeriodicalId\":8807,\"journal\":{\"name\":\"Battery Energy\",\"volume\":\"3 3\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-01-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/bte2.20230064\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Battery Energy\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/bte2.20230064\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Battery Energy","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/bte2.20230064","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
摘要
锂离子电池在零度以下会出现严重的容量损失,甚至无法工作,这主要是由于 Li+ 在固体电解质相间层(SEI)和脱溶过程中传输缓慢所致。醋酸乙酯(EA)是一种非常有前途的低温电解质溶剂,但它与石墨(Gr)阳极的相容性较差。在这里,我们通过阴离子的协同作用调整了基于 EA 的电解质的界面化学性质。低溶解度的 ODFB 参与溶解鞘,大大降低了去溶解能。同时,结合 FSI- 的高解离度,两种阴离子的还原作用构建了富含无机物的 SEI,从而提高了界面稳定性。该电解液使 Gr 阳极的容量达到 293 mA h g-1,2.5 Ah LiFePO4||Gr 袋式电池在 -20°C 时的容量保持率达到 96.85%。值得注意的是,使用所设计电解液的 LiFePO4||Gr 袋式电池在 -40°C 时仍能保持 66.28% 的室温容量。
Regulating the interfacial chemistry of graphite in ethyl acetate-based electrolyte for low-temperature Li-ion batteries
Lithium-ion batteries suffer from severe capacity loss and even fail to work under subzero temperatures, which is mainly due to the sluggish Li+ transportation in the solid electrolyte interphase (SEI) and desolvation process. Ethyl acetate (EA) is a highly promising solvent for low-temperature electrolytes, yet it has poor compatibility with graphite (Gr) anode. Here, we tuned the interfacial chemistry of EA-based electrolytes via synergies of anions. ODFB− with low solvation numbers, participates in the solvation sheath, significantly reducing the desolvation energy. Meanwhile, combined with the high dissociation of FSI−, the reduction of both anions constructs an inorganic-rich SEI to improve interfacial stability. The electrolyte enables Gr anode to deliver a capacity of 293 mA h g−1 and 2.5 Ah LiFePO4||Gr pouch cell to exhibit 96.85% capacity retention at −20°C. Remarkably, LiFePO4||Gr pouch cell with the designed electrolyte can still retain 66.28% of its room-temperature capacity even at −40°C.