{"title":"一个角豆树种群(桦木科:木犀属)内物种界限的综合划定","authors":"Zhi-Qiang Lu, Yong-Zhi Yang, Jian-Quan Liu","doi":"10.1111/jse.13044","DOIUrl":null,"url":null,"abstract":"Both hybridization and intraspecific morphological variation across environmental gradients complicate species delineation. We aimed to discern both possibilities that may blur species boundaries in the <i>Carpinus viminea</i>–<i>Carpinus laxiflora</i>–<i>Carpinus londoniana</i> species complex. We conducted statistical analyses on 535 specimens encompassing the entire distribution of this species complex to identify phenotypic clusters. Additionally, we analyzed genetic divergence and probable hybridization between clusters using 76 individuals from 37 populations. Based on phenotypic and genetic clusters, we tentatively recognized four species: <i>C. viminea</i>, <i>C. fargesii</i>, <i>C. laxiflora</i>, and <i>C. londoniana</i>. Except for rare overlapping distributions between <i>C. fargesii</i> and <i>C. londoniana</i>, the redefined four species are mostly allopatric to each another based on their distributions. The morphological delimitation, species boundary and distribution of each species differ distinctly from past taxonomic treatments. For example, specimens previously identified under <i>C. viminea</i>, in fact, belong to three different species. Hybrids between <i>C. fargesii</i> and <i>C. londoniana</i> exhibit morphological traits similar to <i>C. viminea</i>, thereby contributing to difficulties in determining species boundaries and outlining species distributions. These findings suggest that local selection and geographical isolation may together have promoted both phenotypic and genetic divergences within this species complex. However, interspecific hybridization blurs species boundaries by producing hybrids with phenotypic similarity in addition to intraspecific variation. This study emphasizes the importance of statistical analyses of population-level morphological and genetic variations across major distributional ranges for an integrative delimitation of species boundaries and the identification of hybridization and hybrids.","PeriodicalId":17087,"journal":{"name":"Journal of Systematics and Evolution","volume":"28 1","pages":""},"PeriodicalIF":3.7000,"publicationDate":"2024-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An integrative delimitation of the species' boundaries within one hornbeam species complex (Betulaceae: Carpinus)\",\"authors\":\"Zhi-Qiang Lu, Yong-Zhi Yang, Jian-Quan Liu\",\"doi\":\"10.1111/jse.13044\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Both hybridization and intraspecific morphological variation across environmental gradients complicate species delineation. We aimed to discern both possibilities that may blur species boundaries in the <i>Carpinus viminea</i>–<i>Carpinus laxiflora</i>–<i>Carpinus londoniana</i> species complex. We conducted statistical analyses on 535 specimens encompassing the entire distribution of this species complex to identify phenotypic clusters. Additionally, we analyzed genetic divergence and probable hybridization between clusters using 76 individuals from 37 populations. Based on phenotypic and genetic clusters, we tentatively recognized four species: <i>C. viminea</i>, <i>C. fargesii</i>, <i>C. laxiflora</i>, and <i>C. londoniana</i>. Except for rare overlapping distributions between <i>C. fargesii</i> and <i>C. londoniana</i>, the redefined four species are mostly allopatric to each another based on their distributions. The morphological delimitation, species boundary and distribution of each species differ distinctly from past taxonomic treatments. For example, specimens previously identified under <i>C. viminea</i>, in fact, belong to three different species. Hybrids between <i>C. fargesii</i> and <i>C. londoniana</i> exhibit morphological traits similar to <i>C. viminea</i>, thereby contributing to difficulties in determining species boundaries and outlining species distributions. These findings suggest that local selection and geographical isolation may together have promoted both phenotypic and genetic divergences within this species complex. However, interspecific hybridization blurs species boundaries by producing hybrids with phenotypic similarity in addition to intraspecific variation. This study emphasizes the importance of statistical analyses of population-level morphological and genetic variations across major distributional ranges for an integrative delimitation of species boundaries and the identification of hybridization and hybrids.\",\"PeriodicalId\":17087,\"journal\":{\"name\":\"Journal of Systematics and Evolution\",\"volume\":\"28 1\",\"pages\":\"\"},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2024-01-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Systematics and Evolution\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1111/jse.13044\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Agricultural and Biological Sciences\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Systematics and Evolution","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1111/jse.13044","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Agricultural and Biological Sciences","Score":null,"Total":0}
引用次数: 0
摘要
跨越环境梯度的杂交和种内形态变异使物种划分变得复杂。我们的目标是辨别这两种可能,它们可能会模糊维米尼亚栎-腊叶栎-伦敦栎物种群的物种界限。我们对涵盖该物种群整个分布区的 535 个标本进行了统计分析,以确定表型集群。此外,我们还利用来自 37 个种群的 76 个个体分析了集群间的遗传差异和可能的杂交。根据表型和遗传聚类,我们初步确认了四个物种:C. viminea、C. fargesii、C. laxiflora 和 C. londoniana。除了 C. fargesii 和 C. londoniana 的分布有极少的重叠外,根据它们的分布情况,重新定义的四个物种大多是同域物种。每个物种的形态划界、物种边界和分布都与过去的分类方法有明显不同。例如,以前认定为 C. viminea 的标本实际上属于三个不同的种。C.fargesii和C.londoniana的杂交种表现出与C. viminea相似的形态特征,从而给确定物种界线和概述物种分布造成困难。这些发现表明,当地选择和地理隔离可能共同促进了该物种群的表型和遗传分化。然而,种间杂交除了产生种内变异外,还产生了表型相似的杂交种,从而模糊了物种界限。这项研究强调了对主要分布区种群水平的形态和遗传变异进行统计分析对于综合划定物种边界以及鉴定杂交和杂交种的重要性。
An integrative delimitation of the species' boundaries within one hornbeam species complex (Betulaceae: Carpinus)
Both hybridization and intraspecific morphological variation across environmental gradients complicate species delineation. We aimed to discern both possibilities that may blur species boundaries in the Carpinus viminea–Carpinus laxiflora–Carpinus londoniana species complex. We conducted statistical analyses on 535 specimens encompassing the entire distribution of this species complex to identify phenotypic clusters. Additionally, we analyzed genetic divergence and probable hybridization between clusters using 76 individuals from 37 populations. Based on phenotypic and genetic clusters, we tentatively recognized four species: C. viminea, C. fargesii, C. laxiflora, and C. londoniana. Except for rare overlapping distributions between C. fargesii and C. londoniana, the redefined four species are mostly allopatric to each another based on their distributions. The morphological delimitation, species boundary and distribution of each species differ distinctly from past taxonomic treatments. For example, specimens previously identified under C. viminea, in fact, belong to three different species. Hybrids between C. fargesii and C. londoniana exhibit morphological traits similar to C. viminea, thereby contributing to difficulties in determining species boundaries and outlining species distributions. These findings suggest that local selection and geographical isolation may together have promoted both phenotypic and genetic divergences within this species complex. However, interspecific hybridization blurs species boundaries by producing hybrids with phenotypic similarity in addition to intraspecific variation. This study emphasizes the importance of statistical analyses of population-level morphological and genetic variations across major distributional ranges for an integrative delimitation of species boundaries and the identification of hybridization and hybrids.
期刊介绍:
Journal of Systematics and Evolution (JSE, since 2008; formerly Acta Phytotaxonomica Sinica) is a plant-based international journal newly dedicated to the description and understanding of the biological diversity. It covers: description of new taxa, monographic revision, phylogenetics, molecular evolution and genome evolution, evolutionary developmental biology, evolutionary ecology, population biology, conservation biology, biogeography, paleobiology, evolutionary theories, and related subjects.