间隙大小对激发圆柱形泰勒-库埃特流中磁动不稳定性的影响

IF 2.1 3区 物理与天体物理 Q2 PHYSICS, FLUIDS & PLASMAS
G. Rüdiger, M. Schultz
{"title":"间隙大小对激发圆柱形泰勒-库埃特流中磁动不稳定性的影响","authors":"G. Rüdiger, M. Schultz","doi":"10.1017/s0022377823001356","DOIUrl":null,"url":null,"abstract":"The excitation conditions of the magnetorotational instability (MRI) are studied for axially unbounded Taylor–Couette (TC) flows of various gap widths between the cylinders. The cylinders are considered as made from both perfect-conducting or insulating material and the conducting fluid with a finite but small magnetic Prandtl number rotates with a quasi-Keplerian velocity profile. The solutions are optimized with respect to the wavenumber and the Reynolds number of the rotation of the inner cylinder. For the axisymmetric modes, we find the critical Lundquist number of the applied axial magnetic field: the lower, the wider the gap between the cylinders. A similar result is obtained for the induced cell structure: the wider the gap, the more spherical the cells are. The marginal rotation rate of the inner cylinder – for a fixed size of the outer cylinder – always possesses a minimum for not too wide and not too narrow gap widths. For perfect-conducting walls the minimum lies at <jats:inline-formula> <jats:alternatives> <jats:tex-math>$r_{{\\rm in}}\\simeq 0.4$</jats:tex-math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0022377823001356_inline1.png\" /> </jats:alternatives> </jats:inline-formula>, where <jats:inline-formula> <jats:alternatives> <jats:tex-math>$r_{{\\rm in}}$</jats:tex-math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0022377823001356_inline2.png\" /> </jats:alternatives> </jats:inline-formula> is the ratio of the radii of the two rotating cylinders. The lowest magnetic field amplitudes to excite the instability are required for TC flows between perfect-conducting cylinders with gaps corresponding to <jats:inline-formula> <jats:alternatives> <jats:tex-math>$r_{{\\rm in}}\\simeq ~0.2$</jats:tex-math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0022377823001356_inline3.png\" /> </jats:alternatives> </jats:inline-formula>. For even wider and also for very thin gaps the needed magnetic fields and rotation frequencies are shown to become rather huge. Also the non-axisymmetric modes with <jats:inline-formula> <jats:alternatives> <jats:tex-math>$|m|=1$</jats:tex-math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0022377823001356_inline4.png\" /> </jats:alternatives> </jats:inline-formula> have been considered. Their excitation generally requires stronger magnetic fields and higher magnetic Reynolds numbers in comparison with those for the axisymmetric modes. If TC experiments with too slow rotation for the applied magnetic fields yield unstable modes of any azimuthal symmetry, such as the currently reported Princeton experiment (Wang <jats:italic>et al.</jats:italic>, <jats:italic>Phys. Rev. Lett.</jats:italic>, vol. 129, 115001), then also other players, including axial boundary effects, than the MRI-typical linear combination of current-free fields and differential rotation should be in the game.","PeriodicalId":16846,"journal":{"name":"Journal of Plasma Physics","volume":"8 1","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2024-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The gap-size influence on the excitation of magnetorotational instability in cylindricTaylor–Couette flows\",\"authors\":\"G. Rüdiger, M. Schultz\",\"doi\":\"10.1017/s0022377823001356\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The excitation conditions of the magnetorotational instability (MRI) are studied for axially unbounded Taylor–Couette (TC) flows of various gap widths between the cylinders. The cylinders are considered as made from both perfect-conducting or insulating material and the conducting fluid with a finite but small magnetic Prandtl number rotates with a quasi-Keplerian velocity profile. The solutions are optimized with respect to the wavenumber and the Reynolds number of the rotation of the inner cylinder. For the axisymmetric modes, we find the critical Lundquist number of the applied axial magnetic field: the lower, the wider the gap between the cylinders. A similar result is obtained for the induced cell structure: the wider the gap, the more spherical the cells are. The marginal rotation rate of the inner cylinder – for a fixed size of the outer cylinder – always possesses a minimum for not too wide and not too narrow gap widths. For perfect-conducting walls the minimum lies at <jats:inline-formula> <jats:alternatives> <jats:tex-math>$r_{{\\\\rm in}}\\\\simeq 0.4$</jats:tex-math> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0022377823001356_inline1.png\\\" /> </jats:alternatives> </jats:inline-formula>, where <jats:inline-formula> <jats:alternatives> <jats:tex-math>$r_{{\\\\rm in}}$</jats:tex-math> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0022377823001356_inline2.png\\\" /> </jats:alternatives> </jats:inline-formula> is the ratio of the radii of the two rotating cylinders. The lowest magnetic field amplitudes to excite the instability are required for TC flows between perfect-conducting cylinders with gaps corresponding to <jats:inline-formula> <jats:alternatives> <jats:tex-math>$r_{{\\\\rm in}}\\\\simeq ~0.2$</jats:tex-math> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0022377823001356_inline3.png\\\" /> </jats:alternatives> </jats:inline-formula>. For even wider and also for very thin gaps the needed magnetic fields and rotation frequencies are shown to become rather huge. Also the non-axisymmetric modes with <jats:inline-formula> <jats:alternatives> <jats:tex-math>$|m|=1$</jats:tex-math> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0022377823001356_inline4.png\\\" /> </jats:alternatives> </jats:inline-formula> have been considered. Their excitation generally requires stronger magnetic fields and higher magnetic Reynolds numbers in comparison with those for the axisymmetric modes. If TC experiments with too slow rotation for the applied magnetic fields yield unstable modes of any azimuthal symmetry, such as the currently reported Princeton experiment (Wang <jats:italic>et al.</jats:italic>, <jats:italic>Phys. Rev. Lett.</jats:italic>, vol. 129, 115001), then also other players, including axial boundary effects, than the MRI-typical linear combination of current-free fields and differential rotation should be in the game.\",\"PeriodicalId\":16846,\"journal\":{\"name\":\"Journal of Plasma Physics\",\"volume\":\"8 1\",\"pages\":\"\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2024-01-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Plasma Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1017/s0022377823001356\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHYSICS, FLUIDS & PLASMAS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Plasma Physics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1017/s0022377823001356","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, FLUIDS & PLASMAS","Score":null,"Total":0}
引用次数: 0

摘要

针对圆柱体之间不同间隙宽度的轴向无约束泰勒-库埃特(TC)流,研究了磁致不稳定性(MRI)的激发条件。圆柱体被视为由完全导电或绝缘材料制成,具有有限但较小磁性普朗特数的导电流体以准开普勒速度曲线旋转。根据内圆柱体旋转的波数和雷诺数对求解进行了优化。对于轴对称模式,我们找到了外加轴向磁场的临界伦奎斯特数:越低,圆柱体之间的间隙越大。诱导细胞结构也得到了类似的结果:间隙越大,细胞越呈球形。对于固定尺寸的外圆柱体,内圆柱体的边际旋转率在间隙宽度不太宽和不太窄的情况下总是具有最小值。对于完全导电的壁,最小值位于 $r_{\{rm in}}\simeq 0.4$,其中 $r_{\{rm in}}$ 是两个旋转圆柱体的半径之比。对于间隙为 $r_{{\rm in}}\simeq ~0.2$ 的完美导电圆柱体之间的 TC 流,激发不稳定性所需的磁场幅值最低。对于更宽的间隙和非常薄的间隙,所需的磁场和旋转频率变得相当巨大。此外,还考虑了 $|m|=1$ 的非轴对称模式。与轴对称模式相比,激发非轴对称模式通常需要更强的磁场和更高的磁雷诺数。如果外加磁场旋转太慢的 TC 实验会产生任何方位对称的不稳定模式,例如目前报道的普林斯顿实验(Wang 等,Phys. Rev. Lett.
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The gap-size influence on the excitation of magnetorotational instability in cylindricTaylor–Couette flows
The excitation conditions of the magnetorotational instability (MRI) are studied for axially unbounded Taylor–Couette (TC) flows of various gap widths between the cylinders. The cylinders are considered as made from both perfect-conducting or insulating material and the conducting fluid with a finite but small magnetic Prandtl number rotates with a quasi-Keplerian velocity profile. The solutions are optimized with respect to the wavenumber and the Reynolds number of the rotation of the inner cylinder. For the axisymmetric modes, we find the critical Lundquist number of the applied axial magnetic field: the lower, the wider the gap between the cylinders. A similar result is obtained for the induced cell structure: the wider the gap, the more spherical the cells are. The marginal rotation rate of the inner cylinder – for a fixed size of the outer cylinder – always possesses a minimum for not too wide and not too narrow gap widths. For perfect-conducting walls the minimum lies at $r_{{\rm in}}\simeq 0.4$ , where $r_{{\rm in}}$ is the ratio of the radii of the two rotating cylinders. The lowest magnetic field amplitudes to excite the instability are required for TC flows between perfect-conducting cylinders with gaps corresponding to $r_{{\rm in}}\simeq ~0.2$ . For even wider and also for very thin gaps the needed magnetic fields and rotation frequencies are shown to become rather huge. Also the non-axisymmetric modes with $|m|=1$ have been considered. Their excitation generally requires stronger magnetic fields and higher magnetic Reynolds numbers in comparison with those for the axisymmetric modes. If TC experiments with too slow rotation for the applied magnetic fields yield unstable modes of any azimuthal symmetry, such as the currently reported Princeton experiment (Wang et al., Phys. Rev. Lett., vol. 129, 115001), then also other players, including axial boundary effects, than the MRI-typical linear combination of current-free fields and differential rotation should be in the game.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Plasma Physics
Journal of Plasma Physics 物理-物理:流体与等离子体
CiteScore
3.50
自引率
16.00%
发文量
106
审稿时长
6-12 weeks
期刊介绍: JPP aspires to be the intellectual home of those who think of plasma physics as a fundamental discipline. The journal focuses on publishing research on laboratory plasmas (including magnetically confined and inertial fusion plasmas), space physics and plasma astrophysics that takes advantage of the rapid ongoing progress in instrumentation and computing to advance fundamental understanding of multiscale plasma physics. The Journal welcomes submissions of analytical, numerical, observational and experimental work: both original research and tutorial- or review-style papers, as well as proposals for its Lecture Notes series.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信