{"title":"电压门控钠通道调节剂治疗疼痛的镇痛潜力","authors":"Jason J. McDougall, Melissa S. O'Brien","doi":"10.1016/j.coph.2024.102433","DOIUrl":null,"url":null,"abstract":"<div><p>Neuronal electrochemical signals involve the flux of sodium ions through voltage-gated sodium channels (Na<sub>V</sub>) located in the neurolemma. Of the nine sodium channel subtypes, Na<sub>V</sub>-1.7, 1.8, and 1.9 are predominantly located on nociceptors, making them prime targets to control pain. This review highlights some of the latest discoveries targeting Na<sub>V</sub> channel activity, including: (1) charged local anaesthetic derivatives; (2) Na<sub>V</sub> channel toxins and associated small peptide blockers; (3) regulation of Na<sub>V</sub> channel accessory proteins; and (4) genetic manipulation of Na<sub>V</sub> channel function. While the translation of preclinical findings to a viable treatment in humans has remained a challenge, a greater understanding of Na<sub>V</sub> channel physiology could lead to the development of a new stream of therapies aimed at alleviating chronic pain.</p></div>","PeriodicalId":50603,"journal":{"name":"Current Opinion in Pharmacology","volume":null,"pages":null},"PeriodicalIF":4.0000,"publicationDate":"2024-01-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1471489224000031/pdfft?md5=c9504924cde4ad710a2f60d171f937bb&pid=1-s2.0-S1471489224000031-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Analgesic potential of voltage gated sodium channel modulators for the management of pain\",\"authors\":\"Jason J. McDougall, Melissa S. O'Brien\",\"doi\":\"10.1016/j.coph.2024.102433\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Neuronal electrochemical signals involve the flux of sodium ions through voltage-gated sodium channels (Na<sub>V</sub>) located in the neurolemma. Of the nine sodium channel subtypes, Na<sub>V</sub>-1.7, 1.8, and 1.9 are predominantly located on nociceptors, making them prime targets to control pain. This review highlights some of the latest discoveries targeting Na<sub>V</sub> channel activity, including: (1) charged local anaesthetic derivatives; (2) Na<sub>V</sub> channel toxins and associated small peptide blockers; (3) regulation of Na<sub>V</sub> channel accessory proteins; and (4) genetic manipulation of Na<sub>V</sub> channel function. While the translation of preclinical findings to a viable treatment in humans has remained a challenge, a greater understanding of Na<sub>V</sub> channel physiology could lead to the development of a new stream of therapies aimed at alleviating chronic pain.</p></div>\",\"PeriodicalId\":50603,\"journal\":{\"name\":\"Current Opinion in Pharmacology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.0000,\"publicationDate\":\"2024-01-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S1471489224000031/pdfft?md5=c9504924cde4ad710a2f60d171f937bb&pid=1-s2.0-S1471489224000031-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Current Opinion in Pharmacology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1471489224000031\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PHARMACOLOGY & PHARMACY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Opinion in Pharmacology","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1471489224000031","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0
摘要
神经元电化学信号涉及钠离子通过位于神经胶质细胞内的电压门控钠通道(NaV)的通量。在九种钠通道亚型中,NaV-1.7、1.8 和 1.9 主要位于痛觉感受器上,是控制疼痛的主要目标。本综述重点介绍针对 NaV 通道活性的一些最新发现,包括:(1) 带电荷的局麻药衍生物;(2) NaV 通道毒素和相关的小肽阻断剂;(3) NaV 通道附属蛋白的调控;以及 (4) NaV 通道功能的遗传操作。虽然将临床前研究结果转化为可行的人体治疗方法仍是一项挑战,但加深对 NaV 通道生理学的了解可开发出一系列旨在缓解慢性疼痛的新疗法。
Analgesic potential of voltage gated sodium channel modulators for the management of pain
Neuronal electrochemical signals involve the flux of sodium ions through voltage-gated sodium channels (NaV) located in the neurolemma. Of the nine sodium channel subtypes, NaV-1.7, 1.8, and 1.9 are predominantly located on nociceptors, making them prime targets to control pain. This review highlights some of the latest discoveries targeting NaV channel activity, including: (1) charged local anaesthetic derivatives; (2) NaV channel toxins and associated small peptide blockers; (3) regulation of NaV channel accessory proteins; and (4) genetic manipulation of NaV channel function. While the translation of preclinical findings to a viable treatment in humans has remained a challenge, a greater understanding of NaV channel physiology could lead to the development of a new stream of therapies aimed at alleviating chronic pain.
期刊介绍:
Current Opinion in Pharmacology (COPHAR) publishes authoritative, comprehensive, and systematic reviews. COPHAR helps specialists keep up to date with a clear and readable synthesis on current advances in pharmacology and drug discovery. Expert authors annotate the most interesting papers from the expanding volume of information published today, saving valuable time and giving the reader insight on areas of importance.