利用随机降序模型优化随机交通荷载下的桥梁拓扑结构

IF 3 3区 工程技术 Q2 ENGINEERING, MECHANICAL
Kaiming Luo , Xuhui He , Haiquan Jing
{"title":"利用随机降序模型优化随机交通荷载下的桥梁拓扑结构","authors":"Kaiming Luo ,&nbsp;Xuhui He ,&nbsp;Haiquan Jing","doi":"10.1016/j.probengmech.2024.103583","DOIUrl":null,"url":null,"abstract":"<div><p>This paper presents a framework for robust topology optimization of bridges under random traffic loading. Traffic loading is simulated using a stream of random moving loads parameterized by their masses, speeds, directions, and arrival times. The stochastic reduced-order model approach is combined with the equivalent static load method to achieve uncertainty-informed dynamic response topology optimization. The stochastic reduced-order model approach propagates uncertainty and reduces problem dimension, whereas the equivalent static load method is employed for dynamic response topology optimization. The effectiveness of the proposed optimization framework is demonstrated using several numerical examples. The proposed framework is found to be effective in optimizing structures under traffic loading, making it a promising solution for the topological design of bridges.</p></div>","PeriodicalId":54583,"journal":{"name":"Probabilistic Engineering Mechanics","volume":"75 ","pages":"Article 103583"},"PeriodicalIF":3.0000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Topology optimization of bridges under random traffic loading using stochastic reduced-order models\",\"authors\":\"Kaiming Luo ,&nbsp;Xuhui He ,&nbsp;Haiquan Jing\",\"doi\":\"10.1016/j.probengmech.2024.103583\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This paper presents a framework for robust topology optimization of bridges under random traffic loading. Traffic loading is simulated using a stream of random moving loads parameterized by their masses, speeds, directions, and arrival times. The stochastic reduced-order model approach is combined with the equivalent static load method to achieve uncertainty-informed dynamic response topology optimization. The stochastic reduced-order model approach propagates uncertainty and reduces problem dimension, whereas the equivalent static load method is employed for dynamic response topology optimization. The effectiveness of the proposed optimization framework is demonstrated using several numerical examples. The proposed framework is found to be effective in optimizing structures under traffic loading, making it a promising solution for the topological design of bridges.</p></div>\",\"PeriodicalId\":54583,\"journal\":{\"name\":\"Probabilistic Engineering Mechanics\",\"volume\":\"75 \",\"pages\":\"Article 103583\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2024-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Probabilistic Engineering Mechanics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0266892024000055\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Probabilistic Engineering Mechanics","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0266892024000055","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0

摘要

本文提出了一种在随机交通荷载条件下对桥梁进行稳健拓扑优化的框架。交通荷载是通过以质量、速度、方向和到达时间为参数的随机移动荷载流来模拟的。随机减阶模型方法与等效静荷载方法相结合,实现了不确定性信息动态响应拓扑优化。随机减阶模型方法传播了不确定性并降低了问题维度,而等效静态载荷方法则用于动态响应拓扑优化。通过几个数值示例证明了所提出的优化框架的有效性。结果表明,所提出的框架能有效优化交通荷载下的结构,是桥梁拓扑设计的一个很有前途的解决方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Topology optimization of bridges under random traffic loading using stochastic reduced-order models

This paper presents a framework for robust topology optimization of bridges under random traffic loading. Traffic loading is simulated using a stream of random moving loads parameterized by their masses, speeds, directions, and arrival times. The stochastic reduced-order model approach is combined with the equivalent static load method to achieve uncertainty-informed dynamic response topology optimization. The stochastic reduced-order model approach propagates uncertainty and reduces problem dimension, whereas the equivalent static load method is employed for dynamic response topology optimization. The effectiveness of the proposed optimization framework is demonstrated using several numerical examples. The proposed framework is found to be effective in optimizing structures under traffic loading, making it a promising solution for the topological design of bridges.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Probabilistic Engineering Mechanics
Probabilistic Engineering Mechanics 工程技术-工程:机械
CiteScore
3.80
自引率
15.40%
发文量
98
审稿时长
13.5 months
期刊介绍: This journal provides a forum for scholarly work dealing primarily with probabilistic and statistical approaches to contemporary solid/structural and fluid mechanics problems encountered in diverse technical disciplines such as aerospace, civil, marine, mechanical, and nuclear engineering. The journal aims to maintain a healthy balance between general solution techniques and problem-specific results, encouraging a fruitful exchange of ideas among disparate engineering specialities.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信