模式组合法对大型密封冰柜厚冰层中金黄色葡萄球菌的杀菌效果和机理探索

IF 2.9 3区 物理与天体物理 Q2 PHYSICS, APPLIED
Min Chen, Dingxin Liu, Zifeng Wang, Jishen Zhang, Jiao Lin, Pengyu Zhao, Tianhui Li, Hao Zhang, Li Guo, Mingzhe Rong
{"title":"模式组合法对大型密封冰柜厚冰层中金黄色葡萄球菌的杀菌效果和机理探索","authors":"Min Chen, Dingxin Liu, Zifeng Wang, Jishen Zhang, Jiao Lin, Pengyu Zhao, Tianhui Li, Hao Zhang, Li Guo, Mingzhe Rong","doi":"10.1002/ppap.202300221","DOIUrl":null,"url":null,"abstract":"Cold-chain transport is a crucial cross-regional transmission pathway for severe acute respiratory syndrome coronavirus 2 and other microorganisms. In this study, the mode-combination method is adopted for sterilization in a 1.138 m<sup>3</sup> freezer by mixing effluent gases of NO<sub><i>x</i></sub> and O<sub>3</sub> mode air discharges. The mixed gas can effectively inactivate <i>Staphylococcus aureus</i> in 10 mm ice within 3 h, which significantly surpasses O<sub>3</sub> gas. Moreover, the inactivation effect of the mixed gas can penetrate deep into ice, contrasting with the surface effect of O<sub>3</sub> gas. This disparity is linked to the difference in penetration depth of strong oxidizing long-lived reactive species. This study validates the sterilization efficacy of cold atmospheric plasma in practical cold-chain environment, critical for curbing infectious disease transmission.","PeriodicalId":20135,"journal":{"name":"Plasma Processes and Polymers","volume":"39 1","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2024-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Sterilization effect and mechanism exploration of a mode-combination method on Staphylococcus aureus in thick ice layers in a large sealed freezer\",\"authors\":\"Min Chen, Dingxin Liu, Zifeng Wang, Jishen Zhang, Jiao Lin, Pengyu Zhao, Tianhui Li, Hao Zhang, Li Guo, Mingzhe Rong\",\"doi\":\"10.1002/ppap.202300221\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Cold-chain transport is a crucial cross-regional transmission pathway for severe acute respiratory syndrome coronavirus 2 and other microorganisms. In this study, the mode-combination method is adopted for sterilization in a 1.138 m<sup>3</sup> freezer by mixing effluent gases of NO<sub><i>x</i></sub> and O<sub>3</sub> mode air discharges. The mixed gas can effectively inactivate <i>Staphylococcus aureus</i> in 10 mm ice within 3 h, which significantly surpasses O<sub>3</sub> gas. Moreover, the inactivation effect of the mixed gas can penetrate deep into ice, contrasting with the surface effect of O<sub>3</sub> gas. This disparity is linked to the difference in penetration depth of strong oxidizing long-lived reactive species. This study validates the sterilization efficacy of cold atmospheric plasma in practical cold-chain environment, critical for curbing infectious disease transmission.\",\"PeriodicalId\":20135,\"journal\":{\"name\":\"Plasma Processes and Polymers\",\"volume\":\"39 1\",\"pages\":\"\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2024-01-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Plasma Processes and Polymers\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1002/ppap.202300221\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHYSICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plasma Processes and Polymers","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1002/ppap.202300221","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

冷链运输是严重急性呼吸系统综合征冠状病毒 2 和其他微生物跨区域传播的重要途径。本研究采用模式组合法,通过混合 NOx 和 O3 模式排出的废气,对 1.138 立方米的冷冻室进行灭菌。混合气体可在 3 小时内有效灭活 10 毫米冰块中的金黄色葡萄球菌,明显优于 O3 气体。此外,混合气体的灭活效果可以深入冰层,与 O3 气体的表面效果形成鲜明对比。这种差异与强氧化性长寿命活性物种的渗透深度不同有关。这项研究验证了冷大气等离子体在实际冷链环境中的灭菌效果,这对遏制传染病传播至关重要。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Sterilization effect and mechanism exploration of a mode-combination method on Staphylococcus aureus in thick ice layers in a large sealed freezer

Sterilization effect and mechanism exploration of a mode-combination method on Staphylococcus aureus in thick ice layers in a large sealed freezer
Cold-chain transport is a crucial cross-regional transmission pathway for severe acute respiratory syndrome coronavirus 2 and other microorganisms. In this study, the mode-combination method is adopted for sterilization in a 1.138 m3 freezer by mixing effluent gases of NOx and O3 mode air discharges. The mixed gas can effectively inactivate Staphylococcus aureus in 10 mm ice within 3 h, which significantly surpasses O3 gas. Moreover, the inactivation effect of the mixed gas can penetrate deep into ice, contrasting with the surface effect of O3 gas. This disparity is linked to the difference in penetration depth of strong oxidizing long-lived reactive species. This study validates the sterilization efficacy of cold atmospheric plasma in practical cold-chain environment, critical for curbing infectious disease transmission.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Plasma Processes and Polymers
Plasma Processes and Polymers 物理-高分子科学
CiteScore
6.60
自引率
11.40%
发文量
150
审稿时长
3 months
期刊介绍: Plasma Processes & Polymers focuses on the interdisciplinary field of low temperature plasma science, covering both experimental and theoretical aspects of fundamental and applied research in materials science, physics, chemistry and engineering in the area of plasma sources and plasma-based treatments.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信