利用时空组合神经网络预测海南有/无展宽-F 的电离层图

IF 3.7 2区 地球科学
Space Weather Pub Date : 2024-01-24 DOI:10.1029/2023sw003727
Pengdong Gao, Jinhui Cai, Zheng Wang, Chu Qiu, Guojun Wang, Quan Qi, Bo Wang, Jiankui Shi, Xiao Wang, Kai Ding
{"title":"利用时空组合神经网络预测海南有/无展宽-F 的电离层图","authors":"Pengdong Gao, Jinhui Cai, Zheng Wang, Chu Qiu, Guojun Wang, Quan Qi, Bo Wang, Jiankui Shi, Xiao Wang, Kai Ding","doi":"10.1029/2023sw003727","DOIUrl":null,"url":null,"abstract":"An intelligent high-definition and short-term prediction of ionograms with/without Spread-F for the observation at Hainan (19.5°N, 109.1°E, magnetic 11°N) is presented in this paper, which comprises a spatio-temporal ConvGRU network and a super-resolution EDSR network. Our prediction is based on spatio-temporal features in the ionogram graph only. There are 469,227 ionograms classified into 5 categories, that is, frequency/range/mix/strong range/no Spread F, over a solar cycle (14 years) labeled manually by the research group, and we process these ionograms into two data sets for training the two networks mentioned above. A series of comprehensive experiments have been designed and conducted to determine the optimal super-parameters. Our method inputs 8 consecutive authentic ionograms (lasting 2 hr) and generates the next 2 figures (next 30 min). Remarkably, all predicted figures achieve a high accuracy rate of over 94% in predicting the occurrence of Spread-F.","PeriodicalId":22181,"journal":{"name":"Space Weather","volume":"27 1","pages":""},"PeriodicalIF":3.7000,"publicationDate":"2024-01-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Prediction of Ionograms With/Without Spread-F at Hainan by a Combined Spatio-Temporal Neural Network\",\"authors\":\"Pengdong Gao, Jinhui Cai, Zheng Wang, Chu Qiu, Guojun Wang, Quan Qi, Bo Wang, Jiankui Shi, Xiao Wang, Kai Ding\",\"doi\":\"10.1029/2023sw003727\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"An intelligent high-definition and short-term prediction of ionograms with/without Spread-F for the observation at Hainan (19.5°N, 109.1°E, magnetic 11°N) is presented in this paper, which comprises a spatio-temporal ConvGRU network and a super-resolution EDSR network. Our prediction is based on spatio-temporal features in the ionogram graph only. There are 469,227 ionograms classified into 5 categories, that is, frequency/range/mix/strong range/no Spread F, over a solar cycle (14 years) labeled manually by the research group, and we process these ionograms into two data sets for training the two networks mentioned above. A series of comprehensive experiments have been designed and conducted to determine the optimal super-parameters. Our method inputs 8 consecutive authentic ionograms (lasting 2 hr) and generates the next 2 figures (next 30 min). Remarkably, all predicted figures achieve a high accuracy rate of over 94% in predicting the occurrence of Spread-F.\",\"PeriodicalId\":22181,\"journal\":{\"name\":\"Space Weather\",\"volume\":\"27 1\",\"pages\":\"\"},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2024-01-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Space Weather\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.1029/2023sw003727\",\"RegionNum\":2,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Space Weather","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1029/2023sw003727","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文介绍了针对海南(北纬 19.5°,东经 109.1°,磁 11°N)观测的有/无 Spread-F 电离图的智能高清短期预测,它由时空 ConvGRU 网络和超分辨率 EDSR 网络组成。我们的预测仅基于离子图中的时空特征。在一个太阳周期(14 年)内,有 469,227 张电离图被分为 5 类,即频率/范围/混合/强范围/无展宽 F,这些电离图由研究小组人工标注,我们将这些电离图处理成两个数据集,用于训练上述两个网络。我们设计并进行了一系列综合实验,以确定最佳超级参数。我们的方法输入 8 个连续的真实电离图(持续 2 小时),并生成下两个数字(接下来的 30 分钟)。值得注意的是,所有预测数字在预测 Spread-F 的发生方面都达到了 94% 以上的高准确率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Prediction of Ionograms With/Without Spread-F at Hainan by a Combined Spatio-Temporal Neural Network
An intelligent high-definition and short-term prediction of ionograms with/without Spread-F for the observation at Hainan (19.5°N, 109.1°E, magnetic 11°N) is presented in this paper, which comprises a spatio-temporal ConvGRU network and a super-resolution EDSR network. Our prediction is based on spatio-temporal features in the ionogram graph only. There are 469,227 ionograms classified into 5 categories, that is, frequency/range/mix/strong range/no Spread F, over a solar cycle (14 years) labeled manually by the research group, and we process these ionograms into two data sets for training the two networks mentioned above. A series of comprehensive experiments have been designed and conducted to determine the optimal super-parameters. Our method inputs 8 consecutive authentic ionograms (lasting 2 hr) and generates the next 2 figures (next 30 min). Remarkably, all predicted figures achieve a high accuracy rate of over 94% in predicting the occurrence of Spread-F.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
29.70%
发文量
166
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信