Yan Cao , Guantao Chen , Guangming Jing , Songling Shan
{"title":"希尔顿和赵的核心猜想","authors":"Yan Cao , Guantao Chen , Guangming Jing , Songling Shan","doi":"10.1016/j.jctb.2024.01.004","DOIUrl":null,"url":null,"abstract":"<div><p>A simple graph <em>G</em><span> with maximum degree Δ is </span><em>overfull</em> if <span><math><mo>|</mo><mi>E</mi><mo>(</mo><mi>G</mi><mo>)</mo><mo>|</mo><mo>></mo><mi>Δ</mi><mo>⌊</mo><mo>|</mo><mi>V</mi><mo>(</mo><mi>G</mi><mo>)</mo><mo>|</mo><mo>/</mo><mn>2</mn><mo>⌋</mo></math></span>. The <em>core</em> of <em>G</em>, denoted <span><math><msub><mrow><mi>G</mi></mrow><mrow><mi>Δ</mi></mrow></msub></math></span>, is the subgraph of <em>G</em> induced by its vertices of degree Δ. Clearly, the chromatic index of <em>G</em> equals <span><math><mi>Δ</mi><mo>+</mo><mn>1</mn></math></span> if <em>G</em> is overfull. Conversely, Hilton and Zhao in 1996 conjectured that if <em>G</em><span> is a simple connected graph with </span><span><math><mi>Δ</mi><mo>≥</mo><mn>3</mn></math></span> and <span><math><mi>Δ</mi><mo>(</mo><msub><mrow><mi>G</mi></mrow><mrow><mi>Δ</mi></mrow></msub><mo>)</mo><mo>≤</mo><mn>2</mn></math></span>, then <span><math><msup><mrow><mi>χ</mi></mrow><mrow><mo>′</mo></mrow></msup><mo>(</mo><mi>G</mi><mo>)</mo><mo>=</mo><mi>Δ</mi><mo>+</mo><mn>1</mn></math></span> implies that <em>G</em> is overfull or <span><math><mi>G</mi><mo>=</mo><msup><mrow><mi>P</mi></mrow><mrow><mo>⁎</mo></mrow></msup></math></span>, where <span><math><msup><mrow><mi>P</mi></mrow><mrow><mo>⁎</mo></mrow></msup></math></span> is obtained from the Petersen graph by deleting a vertex. Cariolaro and Cariolaro settled the base case <span><math><mi>Δ</mi><mo>=</mo><mn>3</mn></math></span> in 2003, and Cranston and Rabern proved the next case, <span><math><mi>Δ</mi><mo>=</mo><mn>4</mn></math></span>, in 2019. In this paper, we give a proof of this conjecture for all <span><math><mi>Δ</mi><mo>≥</mo><mn>4</mn></math></span>.</p></div>","PeriodicalId":54865,"journal":{"name":"Journal of Combinatorial Theory Series B","volume":"166 ","pages":"Pages 154-182"},"PeriodicalIF":1.2000,"publicationDate":"2024-01-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The core conjecture of Hilton and Zhao\",\"authors\":\"Yan Cao , Guantao Chen , Guangming Jing , Songling Shan\",\"doi\":\"10.1016/j.jctb.2024.01.004\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>A simple graph <em>G</em><span> with maximum degree Δ is </span><em>overfull</em> if <span><math><mo>|</mo><mi>E</mi><mo>(</mo><mi>G</mi><mo>)</mo><mo>|</mo><mo>></mo><mi>Δ</mi><mo>⌊</mo><mo>|</mo><mi>V</mi><mo>(</mo><mi>G</mi><mo>)</mo><mo>|</mo><mo>/</mo><mn>2</mn><mo>⌋</mo></math></span>. The <em>core</em> of <em>G</em>, denoted <span><math><msub><mrow><mi>G</mi></mrow><mrow><mi>Δ</mi></mrow></msub></math></span>, is the subgraph of <em>G</em> induced by its vertices of degree Δ. Clearly, the chromatic index of <em>G</em> equals <span><math><mi>Δ</mi><mo>+</mo><mn>1</mn></math></span> if <em>G</em> is overfull. Conversely, Hilton and Zhao in 1996 conjectured that if <em>G</em><span> is a simple connected graph with </span><span><math><mi>Δ</mi><mo>≥</mo><mn>3</mn></math></span> and <span><math><mi>Δ</mi><mo>(</mo><msub><mrow><mi>G</mi></mrow><mrow><mi>Δ</mi></mrow></msub><mo>)</mo><mo>≤</mo><mn>2</mn></math></span>, then <span><math><msup><mrow><mi>χ</mi></mrow><mrow><mo>′</mo></mrow></msup><mo>(</mo><mi>G</mi><mo>)</mo><mo>=</mo><mi>Δ</mi><mo>+</mo><mn>1</mn></math></span> implies that <em>G</em> is overfull or <span><math><mi>G</mi><mo>=</mo><msup><mrow><mi>P</mi></mrow><mrow><mo>⁎</mo></mrow></msup></math></span>, where <span><math><msup><mrow><mi>P</mi></mrow><mrow><mo>⁎</mo></mrow></msup></math></span> is obtained from the Petersen graph by deleting a vertex. Cariolaro and Cariolaro settled the base case <span><math><mi>Δ</mi><mo>=</mo><mn>3</mn></math></span> in 2003, and Cranston and Rabern proved the next case, <span><math><mi>Δ</mi><mo>=</mo><mn>4</mn></math></span>, in 2019. In this paper, we give a proof of this conjecture for all <span><math><mi>Δ</mi><mo>≥</mo><mn>4</mn></math></span>.</p></div>\",\"PeriodicalId\":54865,\"journal\":{\"name\":\"Journal of Combinatorial Theory Series B\",\"volume\":\"166 \",\"pages\":\"Pages 154-182\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2024-01-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Combinatorial Theory Series B\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0095895624000054\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Combinatorial Theory Series B","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0095895624000054","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
摘要
如果|E(G)|>Δ⌊|V(G)|/2⌋,则最大度数为 Δ 的简单图 G 为过满图。显然,如果 G 是 overfull,则 G 的色度指数等于 Δ+1。相反,希尔顿和赵在 1996 年猜想,如果 G 是简单连通图,且 Δ≥3 和 Δ(GΔ)≤2,那么 χ′(G)=Δ+1 意味着 G 是过满的,或者 G=P⁎,其中 P⁎ 是通过删除一个顶点从彼得森图中得到的。Cariolaro 和 Cariolaro 于 2003 年解决了基本情况 Δ=3 的问题,Cranston 和 Rabern 于 2019 年证明了下一种情况 Δ=4。在本文中,我们给出了对所有 Δ≥4 的这一猜想的证明。
A simple graph G with maximum degree Δ is overfull if . The core of G, denoted , is the subgraph of G induced by its vertices of degree Δ. Clearly, the chromatic index of G equals if G is overfull. Conversely, Hilton and Zhao in 1996 conjectured that if G is a simple connected graph with and , then implies that G is overfull or , where is obtained from the Petersen graph by deleting a vertex. Cariolaro and Cariolaro settled the base case in 2003, and Cranston and Rabern proved the next case, , in 2019. In this paper, we give a proof of this conjecture for all .
期刊介绍:
The Journal of Combinatorial Theory publishes original mathematical research dealing with theoretical and physical aspects of the study of finite and discrete structures in all branches of science. Series B is concerned primarily with graph theory and matroid theory and is a valuable tool for mathematicians and computer scientists.