关于正交阵列 OA(3,5,4n + 2)的新成果

IF 0.9 2区 数学 Q2 MATHEMATICS
Dongliang Li, Haitao Cao
{"title":"关于正交阵列 OA(3,5,4n + 2)的新成果","authors":"Dongliang Li,&nbsp;Haitao Cao","doi":"10.1016/j.jcta.2024.105864","DOIUrl":null,"url":null,"abstract":"<div><p><span>An orthogonal array of index unity, order </span><em>v</em>, degree 5 and strength 3, or an OA<span><math><mo>(</mo><mn>3</mn><mo>,</mo><mn>5</mn><mo>,</mo><mi>v</mi><mo>)</mo></math></span> in short, is a <span><math><mn>5</mn><mo>×</mo><msup><mrow><mi>v</mi></mrow><mrow><mn>3</mn></mrow></msup></math></span> array on <em>v</em> symbols and in every <span><math><mn>3</mn><mo>×</mo><msup><mrow><mi>v</mi></mrow><mrow><mn>3</mn></mrow></msup></math></span> subarray, each 3-tuple column vector occurs exactly once. The existence of an OA<span><math><mo>(</mo><mn>3</mn><mo>,</mo><mn>5</mn><mo>,</mo><mn>4</mn><mi>n</mi><mo>+</mo><mn>2</mn><mo>)</mo></math></span> is still open except for few known infinite classes of <em>n</em><span>. In this paper, we introduce a new combinatorial structure<span> called three dimensions orthogonal complete large sets of disjoint incomplete Latin squares and use it to obtain many new infinite classes of OA</span></span><span><math><mo>(</mo><mn>3</mn><mo>,</mo><mn>5</mn><mo>,</mo><mn>4</mn><mi>n</mi><mo>+</mo><mn>2</mn><mo>)</mo></math></span>s.</p></div>","PeriodicalId":50230,"journal":{"name":"Journal of Combinatorial Theory Series A","volume":"204 ","pages":"Article 105864"},"PeriodicalIF":0.9000,"publicationDate":"2024-01-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"New results on orthogonal arrays OA(3,5,4n + 2)\",\"authors\":\"Dongliang Li,&nbsp;Haitao Cao\",\"doi\":\"10.1016/j.jcta.2024.105864\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p><span>An orthogonal array of index unity, order </span><em>v</em>, degree 5 and strength 3, or an OA<span><math><mo>(</mo><mn>3</mn><mo>,</mo><mn>5</mn><mo>,</mo><mi>v</mi><mo>)</mo></math></span> in short, is a <span><math><mn>5</mn><mo>×</mo><msup><mrow><mi>v</mi></mrow><mrow><mn>3</mn></mrow></msup></math></span> array on <em>v</em> symbols and in every <span><math><mn>3</mn><mo>×</mo><msup><mrow><mi>v</mi></mrow><mrow><mn>3</mn></mrow></msup></math></span> subarray, each 3-tuple column vector occurs exactly once. The existence of an OA<span><math><mo>(</mo><mn>3</mn><mo>,</mo><mn>5</mn><mo>,</mo><mn>4</mn><mi>n</mi><mo>+</mo><mn>2</mn><mo>)</mo></math></span> is still open except for few known infinite classes of <em>n</em><span>. In this paper, we introduce a new combinatorial structure<span> called three dimensions orthogonal complete large sets of disjoint incomplete Latin squares and use it to obtain many new infinite classes of OA</span></span><span><math><mo>(</mo><mn>3</mn><mo>,</mo><mn>5</mn><mo>,</mo><mn>4</mn><mi>n</mi><mo>+</mo><mn>2</mn><mo>)</mo></math></span>s.</p></div>\",\"PeriodicalId\":50230,\"journal\":{\"name\":\"Journal of Combinatorial Theory Series A\",\"volume\":\"204 \",\"pages\":\"Article 105864\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2024-01-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Combinatorial Theory Series A\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0097316524000037\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Combinatorial Theory Series A","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0097316524000037","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

索引为 unity、阶数为 v、阶数为 5、强度为 3 的正交数组,简称 OA(3,5,v),是关于 v 个符号的 5×v3 数组,在每个 3×v3 子数组中,每个 3 元组列向量恰好出现一次。本文引入了一种新的组合结构,称为三维正交完整大集不完全拉丁正方形,并利用它得到了许多新的无穷类 OA(3,5,4n+2)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
New results on orthogonal arrays OA(3,5,4n + 2)

An orthogonal array of index unity, order v, degree 5 and strength 3, or an OA(3,5,v) in short, is a 5×v3 array on v symbols and in every 3×v3 subarray, each 3-tuple column vector occurs exactly once. The existence of an OA(3,5,4n+2) is still open except for few known infinite classes of n. In this paper, we introduce a new combinatorial structure called three dimensions orthogonal complete large sets of disjoint incomplete Latin squares and use it to obtain many new infinite classes of OA(3,5,4n+2)s.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.90
自引率
9.10%
发文量
94
审稿时长
12 months
期刊介绍: The Journal of Combinatorial Theory publishes original mathematical research concerned with theoretical and physical aspects of the study of finite and discrete structures in all branches of science. Series A is concerned primarily with structures, designs, and applications of combinatorics and is a valuable tool for mathematicians and computer scientists.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信