{"title":"揭示 NAC 结构域转录因子 SOG1 的结构和相互作用:实验室内视角","authors":"Kalyan Mahapatra","doi":"10.1016/j.jgeb.2023.100333","DOIUrl":null,"url":null,"abstract":"<div><p>SOG1 is a crucial plant-specific NAC domain family transcription factor and functions as the central regulator of DNA damage response, acting downstream of ATM and ATR kinases. In this study, various <em>in-silico</em> approaches have been employed for the characterization of SOG1 transcription factor in a comparative manner with its orthologues from various plant species. Amino acid sequences of more than a hundred SOG1 or SOG1-like proteins were retrieved and their relationship was determined through phylogenetic and motif analyses. Various physiochemical properties and secondary structural components of SOG1 orthologues were determined in selective plant species including <em>Arabidopsis thaliana</em>, <em>Oryza sativa</em>, <em>Amborella trichopoda</em>, and <em>Physcomitrella patens</em>. Furthermore, fold recognition or threading and homology-based three-dimensional models of SOG1 were constructed followed by subsequent evaluation of quality and accuracy of the generated protein models. Finally, extensive DNA-Protein and Protein-Protein interaction studies were performed using the HADDOCK server to give an insight into the mechanism of how SOG1 binds with the promoter region of its target genes or interacts with other proteins to regulate the DNA damage responses in plants. Our docking analysis data have shown the molecular mechanism of SOG1′s binding with 5′-CTT(N)<sub>7</sub>AAG-3′ and 5′-(N)<sub>4</sub>GTCAA(N)<sub>4</sub>-3′ consensus sequences present in the promoter region of its target genes. Moreover, SOG1 physically interacts and forms a thermodynamically stable complex with NAC103 and BRCA1 proteins, which possibly serve as coactivators or mediators in the transcription regulatory network of SOG1. Overall, our <em>in-silico</em> study will provide meaningful information regarding the structural and functional characterization of the SOG1 transcription factor.</p></div>","PeriodicalId":53463,"journal":{"name":"Journal of Genetic Engineering and Biotechnology","volume":"22 1","pages":"Article 100333"},"PeriodicalIF":3.5000,"publicationDate":"2024-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1687157X23015044/pdfft?md5=f5cfaeeaf4a3f485351fb1973ec071a5&pid=1-s2.0-S1687157X23015044-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Unveiling the structure and interactions of SOG1, a NAC domain transcription factor: An in-silico perspective\",\"authors\":\"Kalyan Mahapatra\",\"doi\":\"10.1016/j.jgeb.2023.100333\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>SOG1 is a crucial plant-specific NAC domain family transcription factor and functions as the central regulator of DNA damage response, acting downstream of ATM and ATR kinases. In this study, various <em>in-silico</em> approaches have been employed for the characterization of SOG1 transcription factor in a comparative manner with its orthologues from various plant species. Amino acid sequences of more than a hundred SOG1 or SOG1-like proteins were retrieved and their relationship was determined through phylogenetic and motif analyses. Various physiochemical properties and secondary structural components of SOG1 orthologues were determined in selective plant species including <em>Arabidopsis thaliana</em>, <em>Oryza sativa</em>, <em>Amborella trichopoda</em>, and <em>Physcomitrella patens</em>. Furthermore, fold recognition or threading and homology-based three-dimensional models of SOG1 were constructed followed by subsequent evaluation of quality and accuracy of the generated protein models. Finally, extensive DNA-Protein and Protein-Protein interaction studies were performed using the HADDOCK server to give an insight into the mechanism of how SOG1 binds with the promoter region of its target genes or interacts with other proteins to regulate the DNA damage responses in plants. Our docking analysis data have shown the molecular mechanism of SOG1′s binding with 5′-CTT(N)<sub>7</sub>AAG-3′ and 5′-(N)<sub>4</sub>GTCAA(N)<sub>4</sub>-3′ consensus sequences present in the promoter region of its target genes. Moreover, SOG1 physically interacts and forms a thermodynamically stable complex with NAC103 and BRCA1 proteins, which possibly serve as coactivators or mediators in the transcription regulatory network of SOG1. Overall, our <em>in-silico</em> study will provide meaningful information regarding the structural and functional characterization of the SOG1 transcription factor.</p></div>\",\"PeriodicalId\":53463,\"journal\":{\"name\":\"Journal of Genetic Engineering and Biotechnology\",\"volume\":\"22 1\",\"pages\":\"Article 100333\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2024-01-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S1687157X23015044/pdfft?md5=f5cfaeeaf4a3f485351fb1973ec071a5&pid=1-s2.0-S1687157X23015044-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Genetic Engineering and Biotechnology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1687157X23015044\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Biochemistry, Genetics and Molecular Biology\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Genetic Engineering and Biotechnology","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1687157X23015044","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
Unveiling the structure and interactions of SOG1, a NAC domain transcription factor: An in-silico perspective
SOG1 is a crucial plant-specific NAC domain family transcription factor and functions as the central regulator of DNA damage response, acting downstream of ATM and ATR kinases. In this study, various in-silico approaches have been employed for the characterization of SOG1 transcription factor in a comparative manner with its orthologues from various plant species. Amino acid sequences of more than a hundred SOG1 or SOG1-like proteins were retrieved and their relationship was determined through phylogenetic and motif analyses. Various physiochemical properties and secondary structural components of SOG1 orthologues were determined in selective plant species including Arabidopsis thaliana, Oryza sativa, Amborella trichopoda, and Physcomitrella patens. Furthermore, fold recognition or threading and homology-based three-dimensional models of SOG1 were constructed followed by subsequent evaluation of quality and accuracy of the generated protein models. Finally, extensive DNA-Protein and Protein-Protein interaction studies were performed using the HADDOCK server to give an insight into the mechanism of how SOG1 binds with the promoter region of its target genes or interacts with other proteins to regulate the DNA damage responses in plants. Our docking analysis data have shown the molecular mechanism of SOG1′s binding with 5′-CTT(N)7AAG-3′ and 5′-(N)4GTCAA(N)4-3′ consensus sequences present in the promoter region of its target genes. Moreover, SOG1 physically interacts and forms a thermodynamically stable complex with NAC103 and BRCA1 proteins, which possibly serve as coactivators or mediators in the transcription regulatory network of SOG1. Overall, our in-silico study will provide meaningful information regarding the structural and functional characterization of the SOG1 transcription factor.
期刊介绍:
Journal of genetic engineering and biotechnology is devoted to rapid publication of full-length research papers that leads to significant contribution in advancing knowledge in genetic engineering and biotechnology and provide novel perspectives in this research area. JGEB includes all major themes related to genetic engineering and recombinant DNA. The area of interest of JGEB includes but not restricted to: •Plant genetics •Animal genetics •Bacterial enzymes •Agricultural Biotechnology, •Biochemistry, •Biophysics, •Bioinformatics, •Environmental Biotechnology, •Industrial Biotechnology, •Microbial biotechnology, •Medical Biotechnology, •Bioenergy, Biosafety, •Biosecurity, •Bioethics, •GMOS, •Genomic, •Proteomic JGEB accepts