揭示 NAC 结构域转录因子 SOG1 的结构和相互作用:实验室内视角

IF 3.5 Q3 Biochemistry, Genetics and Molecular Biology
Kalyan Mahapatra
{"title":"揭示 NAC 结构域转录因子 SOG1 的结构和相互作用:实验室内视角","authors":"Kalyan Mahapatra","doi":"10.1016/j.jgeb.2023.100333","DOIUrl":null,"url":null,"abstract":"<div><p>SOG1 is a crucial plant-specific NAC domain family transcription factor and functions as the central regulator of DNA damage response, acting downstream of ATM and ATR kinases. In this study, various <em>in-silico</em> approaches have been employed for the characterization of SOG1 transcription factor in a comparative manner with its orthologues from various plant species. Amino acid sequences of more than a hundred SOG1 or SOG1-like proteins were retrieved and their relationship was determined through phylogenetic and motif analyses. Various physiochemical properties and secondary structural components of SOG1 orthologues were determined in selective plant species including <em>Arabidopsis thaliana</em>, <em>Oryza sativa</em>, <em>Amborella trichopoda</em>, and <em>Physcomitrella patens</em>. Furthermore, fold recognition or threading and homology-based three-dimensional models of SOG1 were constructed followed by subsequent evaluation of quality and accuracy of the generated protein models. Finally, extensive DNA-Protein and Protein-Protein interaction studies were performed using the HADDOCK server to give an insight into the mechanism of how SOG1 binds with the promoter region of its target genes or interacts with other proteins to regulate the DNA damage responses in plants. Our docking analysis data have shown the molecular mechanism of SOG1′s binding with 5′-CTT(N)<sub>7</sub>AAG-3′ and 5′-(N)<sub>4</sub>GTCAA(N)<sub>4</sub>-3′ consensus sequences present in the promoter region of its target genes. Moreover, SOG1 physically interacts and forms a thermodynamically stable complex with NAC103 and BRCA1 proteins, which possibly serve as coactivators or mediators in the transcription regulatory network of SOG1. Overall, our <em>in-silico</em> study will provide meaningful information regarding the structural and functional characterization of the SOG1 transcription factor.</p></div>","PeriodicalId":53463,"journal":{"name":"Journal of Genetic Engineering and Biotechnology","volume":"22 1","pages":"Article 100333"},"PeriodicalIF":3.5000,"publicationDate":"2024-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1687157X23015044/pdfft?md5=f5cfaeeaf4a3f485351fb1973ec071a5&pid=1-s2.0-S1687157X23015044-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Unveiling the structure and interactions of SOG1, a NAC domain transcription factor: An in-silico perspective\",\"authors\":\"Kalyan Mahapatra\",\"doi\":\"10.1016/j.jgeb.2023.100333\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>SOG1 is a crucial plant-specific NAC domain family transcription factor and functions as the central regulator of DNA damage response, acting downstream of ATM and ATR kinases. In this study, various <em>in-silico</em> approaches have been employed for the characterization of SOG1 transcription factor in a comparative manner with its orthologues from various plant species. Amino acid sequences of more than a hundred SOG1 or SOG1-like proteins were retrieved and their relationship was determined through phylogenetic and motif analyses. Various physiochemical properties and secondary structural components of SOG1 orthologues were determined in selective plant species including <em>Arabidopsis thaliana</em>, <em>Oryza sativa</em>, <em>Amborella trichopoda</em>, and <em>Physcomitrella patens</em>. Furthermore, fold recognition or threading and homology-based three-dimensional models of SOG1 were constructed followed by subsequent evaluation of quality and accuracy of the generated protein models. Finally, extensive DNA-Protein and Protein-Protein interaction studies were performed using the HADDOCK server to give an insight into the mechanism of how SOG1 binds with the promoter region of its target genes or interacts with other proteins to regulate the DNA damage responses in plants. Our docking analysis data have shown the molecular mechanism of SOG1′s binding with 5′-CTT(N)<sub>7</sub>AAG-3′ and 5′-(N)<sub>4</sub>GTCAA(N)<sub>4</sub>-3′ consensus sequences present in the promoter region of its target genes. Moreover, SOG1 physically interacts and forms a thermodynamically stable complex with NAC103 and BRCA1 proteins, which possibly serve as coactivators or mediators in the transcription regulatory network of SOG1. Overall, our <em>in-silico</em> study will provide meaningful information regarding the structural and functional characterization of the SOG1 transcription factor.</p></div>\",\"PeriodicalId\":53463,\"journal\":{\"name\":\"Journal of Genetic Engineering and Biotechnology\",\"volume\":\"22 1\",\"pages\":\"Article 100333\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2024-01-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S1687157X23015044/pdfft?md5=f5cfaeeaf4a3f485351fb1973ec071a5&pid=1-s2.0-S1687157X23015044-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Genetic Engineering and Biotechnology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1687157X23015044\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Biochemistry, Genetics and Molecular Biology\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Genetic Engineering and Biotechnology","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1687157X23015044","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
引用次数: 0

摘要

SOG1 是一种重要的植物特异性 NAC 结构域家族转录因子,是 DNA 损伤反应的核心调节因子,作用于 ATM 和 ATR 激酶的下游。在这项研究中,我们采用了多种硅学方法,将 SOG1 转录因子与其来自不同植物物种的同源物进行比较,以确定其特征。研究人员检索了一百多个 SOG1 或 SOG1 类似蛋白的氨基酸序列,并通过系统发育和主题分析确定了它们之间的关系。在拟南芥、黑麦草、Amborella trichopoda和Physcomitrella patens等选择性植物物种中测定了SOG1直向同源物的各种理化性质和二级结构成分。此外,还构建了 SOG1 的折叠识别或穿线以及基于同源性的三维模型,随后对生成的蛋白质模型的质量和准确性进行了评估。最后,我们利用 HADDOCK 服务器进行了广泛的 DNA 蛋白和蛋白质相互作用研究,以深入了解 SOG1 如何与其目标基因的启动子区域结合或与其他蛋白质相互作用以调节植物 DNA 损伤反应的机制。我们的对接分析数据显示了SOG1与其靶基因启动子区域中的5′-CTT(N)7AAG-3′和5′-(N)4GTCAA(N)4-3′共识序列结合的分子机制。此外,SOG1 还与 NAC103 和 BRCA1 蛋白发生物理作用并形成热力学稳定的复合物,这两种蛋白可能是 SOG1 转录调控网络中的辅助激活因子或媒介。总之,我们的模拟研究将为 SOG1 转录因子的结构和功能特征提供有意义的信息。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Unveiling the structure and interactions of SOG1, a NAC domain transcription factor: An in-silico perspective

SOG1 is a crucial plant-specific NAC domain family transcription factor and functions as the central regulator of DNA damage response, acting downstream of ATM and ATR kinases. In this study, various in-silico approaches have been employed for the characterization of SOG1 transcription factor in a comparative manner with its orthologues from various plant species. Amino acid sequences of more than a hundred SOG1 or SOG1-like proteins were retrieved and their relationship was determined through phylogenetic and motif analyses. Various physiochemical properties and secondary structural components of SOG1 orthologues were determined in selective plant species including Arabidopsis thaliana, Oryza sativa, Amborella trichopoda, and Physcomitrella patens. Furthermore, fold recognition or threading and homology-based three-dimensional models of SOG1 were constructed followed by subsequent evaluation of quality and accuracy of the generated protein models. Finally, extensive DNA-Protein and Protein-Protein interaction studies were performed using the HADDOCK server to give an insight into the mechanism of how SOG1 binds with the promoter region of its target genes or interacts with other proteins to regulate the DNA damage responses in plants. Our docking analysis data have shown the molecular mechanism of SOG1′s binding with 5′-CTT(N)7AAG-3′ and 5′-(N)4GTCAA(N)4-3′ consensus sequences present in the promoter region of its target genes. Moreover, SOG1 physically interacts and forms a thermodynamically stable complex with NAC103 and BRCA1 proteins, which possibly serve as coactivators or mediators in the transcription regulatory network of SOG1. Overall, our in-silico study will provide meaningful information regarding the structural and functional characterization of the SOG1 transcription factor.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Genetic Engineering and Biotechnology
Journal of Genetic Engineering and Biotechnology Biochemistry, Genetics and Molecular Biology-Biotechnology
CiteScore
5.70
自引率
5.70%
发文量
159
审稿时长
16 weeks
期刊介绍: Journal of genetic engineering and biotechnology is devoted to rapid publication of full-length research papers that leads to significant contribution in advancing knowledge in genetic engineering and biotechnology and provide novel perspectives in this research area. JGEB includes all major themes related to genetic engineering and recombinant DNA. The area of interest of JGEB includes but not restricted to: •Plant genetics •Animal genetics •Bacterial enzymes •Agricultural Biotechnology, •Biochemistry, •Biophysics, •Bioinformatics, •Environmental Biotechnology, •Industrial Biotechnology, •Microbial biotechnology, •Medical Biotechnology, •Bioenergy, Biosafety, •Biosecurity, •Bioethics, •GMOS, •Genomic, •Proteomic JGEB accepts
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信