从 PG(2,q) 的双射构建 Fq3 上的置换多项式

IF 1.2 3区 数学 Q1 MATHEMATICS
Longjiang Qu , Kangquan Li
{"title":"从 PG(2,q) 的双射构建 Fq3 上的置换多项式","authors":"Longjiang Qu ,&nbsp;Kangquan Li","doi":"10.1016/j.ffa.2024.102364","DOIUrl":null,"url":null,"abstract":"<div><p><span>Over the past several years, there are numerous papers about permutation polynomials of the form </span><span><math><msup><mrow><mi>x</mi></mrow><mrow><mi>r</mi></mrow></msup><mi>h</mi><mo>(</mo><msup><mrow><mi>x</mi></mrow><mrow><mi>q</mi><mo>−</mo><mn>1</mn></mrow></msup><mo>)</mo></math></span> over <span><math><msub><mrow><mi>F</mi></mrow><mrow><msup><mrow><mi>q</mi></mrow><mrow><mn>2</mn></mrow></msup></mrow></msub></math></span><span>. A bijection between the multiplicative subgroup </span><span><math><msub><mrow><mi>μ</mi></mrow><mrow><mi>q</mi><mo>+</mo><mn>1</mn></mrow></msub></math></span> of <span><math><msub><mrow><mi>F</mi></mrow><mrow><msup><mrow><mi>q</mi></mrow><mrow><mn>2</mn></mrow></msup></mrow></msub></math></span> and the projective line <span><math><mrow><mi>PG</mi></mrow><mo>(</mo><mn>1</mn><mo>,</mo><mi>q</mi><mo>)</mo><mo>=</mo><msub><mrow><mi>F</mi></mrow><mrow><mi>q</mi></mrow></msub><mo>∪</mo><mo>{</mo><mo>∞</mo><mo>}</mo></math></span> plays a very important role in the research. In this paper, we mainly construct permutation polynomials of the form <span><math><msup><mrow><mi>x</mi></mrow><mrow><mi>r</mi></mrow></msup><mi>h</mi><mo>(</mo><msup><mrow><mi>x</mi></mrow><mrow><mi>q</mi><mo>−</mo><mn>1</mn></mrow></msup><mo>)</mo></math></span> over <span><math><msub><mrow><mi>F</mi></mrow><mrow><msup><mrow><mi>q</mi></mrow><mrow><mn>3</mn></mrow></msup></mrow></msub></math></span><span> from bijections of the projective plane </span><span><math><mrow><mi>PG</mi></mrow><mo>(</mo><mn>2</mn><mo>,</mo><mi>q</mi><mo>)</mo></math></span>. A bijection from the multiplicative subgroup <span><math><msub><mrow><mi>μ</mi></mrow><mrow><msup><mrow><mi>q</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>+</mo><mi>q</mi><mo>+</mo><mn>1</mn></mrow></msub></math></span> of <span><math><msub><mrow><mi>F</mi></mrow><mrow><msup><mrow><mi>q</mi></mrow><mrow><mn>3</mn></mrow></msup></mrow></msub></math></span> to <span><math><mrow><mi>PG</mi></mrow><mo>(</mo><mn>2</mn><mo>,</mo><mi>q</mi><mo>)</mo></math></span> is studied, which is a key theorem of this paper. On this basis, some explicit permutation polynomials of the form <span><math><msup><mrow><mi>x</mi></mrow><mrow><mi>r</mi></mrow></msup><mi>h</mi><mo>(</mo><msup><mrow><mi>x</mi></mrow><mrow><mi>q</mi><mo>−</mo><mn>1</mn></mrow></msup><mo>)</mo></math></span> over <span><math><msub><mrow><mi>F</mi></mrow><mrow><msup><mrow><mi>q</mi></mrow><mrow><mn>3</mn></mrow></msup></mrow></msub></math></span> are constructed from the collineation of <span><math><mrow><mi>PG</mi></mrow><mo>(</mo><mn>2</mn><mo>,</mo><mi>q</mi><mo>)</mo></math></span>, <em>d</em><span>-homogeneous monomials, 2-homogeneous permutations. It is worth noting that although the bijections of </span><span><math><mrow><mi>PG</mi></mrow><mo>(</mo><mn>2</mn><mo>,</mo><mi>q</mi><mo>)</mo></math></span> are simple, the corresponding permutation polynomials over <span><math><msub><mrow><mi>F</mi></mrow><mrow><msup><mrow><mi>q</mi></mrow><mrow><mn>3</mn></mrow></msup></mrow></msub></math></span> are usually complex.</p></div>","PeriodicalId":50446,"journal":{"name":"Finite Fields and Their Applications","volume":null,"pages":null},"PeriodicalIF":1.2000,"publicationDate":"2024-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Constructing permutation polynomials over Fq3 from bijections of PG(2,q)\",\"authors\":\"Longjiang Qu ,&nbsp;Kangquan Li\",\"doi\":\"10.1016/j.ffa.2024.102364\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p><span>Over the past several years, there are numerous papers about permutation polynomials of the form </span><span><math><msup><mrow><mi>x</mi></mrow><mrow><mi>r</mi></mrow></msup><mi>h</mi><mo>(</mo><msup><mrow><mi>x</mi></mrow><mrow><mi>q</mi><mo>−</mo><mn>1</mn></mrow></msup><mo>)</mo></math></span> over <span><math><msub><mrow><mi>F</mi></mrow><mrow><msup><mrow><mi>q</mi></mrow><mrow><mn>2</mn></mrow></msup></mrow></msub></math></span><span>. A bijection between the multiplicative subgroup </span><span><math><msub><mrow><mi>μ</mi></mrow><mrow><mi>q</mi><mo>+</mo><mn>1</mn></mrow></msub></math></span> of <span><math><msub><mrow><mi>F</mi></mrow><mrow><msup><mrow><mi>q</mi></mrow><mrow><mn>2</mn></mrow></msup></mrow></msub></math></span> and the projective line <span><math><mrow><mi>PG</mi></mrow><mo>(</mo><mn>1</mn><mo>,</mo><mi>q</mi><mo>)</mo><mo>=</mo><msub><mrow><mi>F</mi></mrow><mrow><mi>q</mi></mrow></msub><mo>∪</mo><mo>{</mo><mo>∞</mo><mo>}</mo></math></span> plays a very important role in the research. In this paper, we mainly construct permutation polynomials of the form <span><math><msup><mrow><mi>x</mi></mrow><mrow><mi>r</mi></mrow></msup><mi>h</mi><mo>(</mo><msup><mrow><mi>x</mi></mrow><mrow><mi>q</mi><mo>−</mo><mn>1</mn></mrow></msup><mo>)</mo></math></span> over <span><math><msub><mrow><mi>F</mi></mrow><mrow><msup><mrow><mi>q</mi></mrow><mrow><mn>3</mn></mrow></msup></mrow></msub></math></span><span> from bijections of the projective plane </span><span><math><mrow><mi>PG</mi></mrow><mo>(</mo><mn>2</mn><mo>,</mo><mi>q</mi><mo>)</mo></math></span>. A bijection from the multiplicative subgroup <span><math><msub><mrow><mi>μ</mi></mrow><mrow><msup><mrow><mi>q</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>+</mo><mi>q</mi><mo>+</mo><mn>1</mn></mrow></msub></math></span> of <span><math><msub><mrow><mi>F</mi></mrow><mrow><msup><mrow><mi>q</mi></mrow><mrow><mn>3</mn></mrow></msup></mrow></msub></math></span> to <span><math><mrow><mi>PG</mi></mrow><mo>(</mo><mn>2</mn><mo>,</mo><mi>q</mi><mo>)</mo></math></span> is studied, which is a key theorem of this paper. On this basis, some explicit permutation polynomials of the form <span><math><msup><mrow><mi>x</mi></mrow><mrow><mi>r</mi></mrow></msup><mi>h</mi><mo>(</mo><msup><mrow><mi>x</mi></mrow><mrow><mi>q</mi><mo>−</mo><mn>1</mn></mrow></msup><mo>)</mo></math></span> over <span><math><msub><mrow><mi>F</mi></mrow><mrow><msup><mrow><mi>q</mi></mrow><mrow><mn>3</mn></mrow></msup></mrow></msub></math></span> are constructed from the collineation of <span><math><mrow><mi>PG</mi></mrow><mo>(</mo><mn>2</mn><mo>,</mo><mi>q</mi><mo>)</mo></math></span>, <em>d</em><span>-homogeneous monomials, 2-homogeneous permutations. It is worth noting that although the bijections of </span><span><math><mrow><mi>PG</mi></mrow><mo>(</mo><mn>2</mn><mo>,</mo><mi>q</mi><mo>)</mo></math></span> are simple, the corresponding permutation polynomials over <span><math><msub><mrow><mi>F</mi></mrow><mrow><msup><mrow><mi>q</mi></mrow><mrow><mn>3</mn></mrow></msup></mrow></msub></math></span> are usually complex.</p></div>\",\"PeriodicalId\":50446,\"journal\":{\"name\":\"Finite Fields and Their Applications\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2024-01-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Finite Fields and Their Applications\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1071579724000042\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Finite Fields and Their Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1071579724000042","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

在过去的几年里,有许多关于 Fq2 上 xrh(xq-1) 形式的置换多项式的论文。Fq2 的乘法子群 μq+1 与投影线 PG(1,q)=Fq∪{∞} 之间的双射关系在研究中起着非常重要的作用。本文主要从投影面 PG(2,q) 的双射出发,在 Fq3 上构造形式为 xrh(xq-1) 的置换多项式。本文研究了从 Fq3 的乘法子群 μq2+q+1 到 PG(2,q) 的双射,这是本文的一个关键定理。在此基础上,从 PG(2,q)、d-同次单项式、2-同次置换的联立中构造了 Fq3 上一些形式为 xrh(xq-1) 的显式置换多项式。值得注意的是,虽然 PG(2,q) 的双射是简单的,但 Fq3 上相应的置换多项式通常是复杂的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Constructing permutation polynomials over Fq3 from bijections of PG(2,q)

Over the past several years, there are numerous papers about permutation polynomials of the form xrh(xq1) over Fq2. A bijection between the multiplicative subgroup μq+1 of Fq2 and the projective line PG(1,q)=Fq{} plays a very important role in the research. In this paper, we mainly construct permutation polynomials of the form xrh(xq1) over Fq3 from bijections of the projective plane PG(2,q). A bijection from the multiplicative subgroup μq2+q+1 of Fq3 to PG(2,q) is studied, which is a key theorem of this paper. On this basis, some explicit permutation polynomials of the form xrh(xq1) over Fq3 are constructed from the collineation of PG(2,q), d-homogeneous monomials, 2-homogeneous permutations. It is worth noting that although the bijections of PG(2,q) are simple, the corresponding permutation polynomials over Fq3 are usually complex.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.00
自引率
20.00%
发文量
133
审稿时长
6-12 weeks
期刊介绍: Finite Fields and Their Applications is a peer-reviewed technical journal publishing papers in finite field theory as well as in applications of finite fields. As a result of applications in a wide variety of areas, finite fields are increasingly important in several areas of mathematics, including linear and abstract algebra, number theory and algebraic geometry, as well as in computer science, statistics, information theory, and engineering. For cohesion, and because so many applications rely on various theoretical properties of finite fields, it is essential that there be a core of high-quality papers on theoretical aspects. In addition, since much of the vitality of the area comes from computational problems, the journal publishes papers on computational aspects of finite fields as well as on algorithms and complexity of finite field-related methods. The journal also publishes papers in various applications including, but not limited to, algebraic coding theory, cryptology, combinatorial design theory, pseudorandom number generation, and linear recurring sequences. There are other areas of application to be included, but the important point is that finite fields play a nontrivial role in the theory, application, or algorithm.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信