Rongyuan Yang, Qingqing Liu, Dawei Wang, Zhen Zhao, Zhaohai Su, Daping Fan, Qing Liu
{"title":"Toll样受体-2/4拮抗剂Sparstolonin B与炎症性疾病:文献挖掘与网络分析》。","authors":"Rongyuan Yang, Qingqing Liu, Dawei Wang, Zhen Zhao, Zhaohai Su, Daping Fan, Qing Liu","doi":"10.1007/s10557-023-07535-z","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Sparstolonin B (SsnB) is characterized as a new toll-like receptor (TLR)-2/4 antagonist. However, the effects of SsnB on different inflammatory diseases have not been systemically reviewed.</p><p><strong>Methods: </strong>We investigated the effects of SsnB on inflammatory diseases with data mining and network analysis of literature, including frequency description, cluster analysis, association rule mining, functional enrichment, and protein-protein interaction (PPI) mining.</p><p><strong>Results: </strong>A total of 27 experimental reports were included. The ARRIVE 2.0 guidelines were used to evaluate the quality of animal studies. Frequency analysis revealed 13 different diseases (cardio-cerebrovascular system diseases account for 23.53%), 12 pharmacological effects (anti-inflammatory effect accounts for 53.85%), and 67 therapeutic targets. The overview of investigation sequence of SsnB studies was depicted by Sankey diagram. Cluster analysis classified the therapeutic targets for SsnB into four main categories: (1) NF-κB; (2) IL-1β, IL-6, and TNF-α; (3) TLR2, TLR4, and MyD88; (4) the other targets. Moreover, the Apriori association discovered two main association pairs: (1) TNF-α, IL-1β, and IL-6 and (2) TLR2, TLR4, and MyD88 (support range 33.33-50%, confidence range 83.33-88.89%). Functional enrichment of the therapeutic targets for SsnB showed that the top enriched items in the biological process were mainly the response to lipopolysaccharide (LPS)/bacterial origin and regulation of cytokine production. Finally, the PPI network and hub gene selection by maximal clique centrality (MCC) algorithm indicated the top ranked proteins were TNF-α, IL-1β, IL-6, AKT1, PPAR-γ, TLR4, CCL2, and TLR2.</p><p><strong>Conclusion: </strong>These results emphasized the importance of TLR2/TLR4-MyD88-NF-κB-IL-1β/IL-6/TNF-α pathways as therapeutic targets of SsnB in inflammatory diseases.</p>","PeriodicalId":9557,"journal":{"name":"Cardiovascular Drugs and Therapy","volume":" ","pages":"499-515"},"PeriodicalIF":3.1000,"publicationDate":"2025-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Toll-like Receptor-2/4 Antagonist, Sparstolonin B, and Inflammatory Diseases: A Literature Mining and Network Analysis.\",\"authors\":\"Rongyuan Yang, Qingqing Liu, Dawei Wang, Zhen Zhao, Zhaohai Su, Daping Fan, Qing Liu\",\"doi\":\"10.1007/s10557-023-07535-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Sparstolonin B (SsnB) is characterized as a new toll-like receptor (TLR)-2/4 antagonist. However, the effects of SsnB on different inflammatory diseases have not been systemically reviewed.</p><p><strong>Methods: </strong>We investigated the effects of SsnB on inflammatory diseases with data mining and network analysis of literature, including frequency description, cluster analysis, association rule mining, functional enrichment, and protein-protein interaction (PPI) mining.</p><p><strong>Results: </strong>A total of 27 experimental reports were included. The ARRIVE 2.0 guidelines were used to evaluate the quality of animal studies. Frequency analysis revealed 13 different diseases (cardio-cerebrovascular system diseases account for 23.53%), 12 pharmacological effects (anti-inflammatory effect accounts for 53.85%), and 67 therapeutic targets. The overview of investigation sequence of SsnB studies was depicted by Sankey diagram. Cluster analysis classified the therapeutic targets for SsnB into four main categories: (1) NF-κB; (2) IL-1β, IL-6, and TNF-α; (3) TLR2, TLR4, and MyD88; (4) the other targets. Moreover, the Apriori association discovered two main association pairs: (1) TNF-α, IL-1β, and IL-6 and (2) TLR2, TLR4, and MyD88 (support range 33.33-50%, confidence range 83.33-88.89%). Functional enrichment of the therapeutic targets for SsnB showed that the top enriched items in the biological process were mainly the response to lipopolysaccharide (LPS)/bacterial origin and regulation of cytokine production. Finally, the PPI network and hub gene selection by maximal clique centrality (MCC) algorithm indicated the top ranked proteins were TNF-α, IL-1β, IL-6, AKT1, PPAR-γ, TLR4, CCL2, and TLR2.</p><p><strong>Conclusion: </strong>These results emphasized the importance of TLR2/TLR4-MyD88-NF-κB-IL-1β/IL-6/TNF-α pathways as therapeutic targets of SsnB in inflammatory diseases.</p>\",\"PeriodicalId\":9557,\"journal\":{\"name\":\"Cardiovascular Drugs and Therapy\",\"volume\":\" \",\"pages\":\"499-515\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2025-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cardiovascular Drugs and Therapy\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1007/s10557-023-07535-z\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/1/25 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"CARDIAC & CARDIOVASCULAR SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cardiovascular Drugs and Therapy","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s10557-023-07535-z","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/25 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"CARDIAC & CARDIOVASCULAR SYSTEMS","Score":null,"Total":0}
The Toll-like Receptor-2/4 Antagonist, Sparstolonin B, and Inflammatory Diseases: A Literature Mining and Network Analysis.
Background: Sparstolonin B (SsnB) is characterized as a new toll-like receptor (TLR)-2/4 antagonist. However, the effects of SsnB on different inflammatory diseases have not been systemically reviewed.
Methods: We investigated the effects of SsnB on inflammatory diseases with data mining and network analysis of literature, including frequency description, cluster analysis, association rule mining, functional enrichment, and protein-protein interaction (PPI) mining.
Results: A total of 27 experimental reports were included. The ARRIVE 2.0 guidelines were used to evaluate the quality of animal studies. Frequency analysis revealed 13 different diseases (cardio-cerebrovascular system diseases account for 23.53%), 12 pharmacological effects (anti-inflammatory effect accounts for 53.85%), and 67 therapeutic targets. The overview of investigation sequence of SsnB studies was depicted by Sankey diagram. Cluster analysis classified the therapeutic targets for SsnB into four main categories: (1) NF-κB; (2) IL-1β, IL-6, and TNF-α; (3) TLR2, TLR4, and MyD88; (4) the other targets. Moreover, the Apriori association discovered two main association pairs: (1) TNF-α, IL-1β, and IL-6 and (2) TLR2, TLR4, and MyD88 (support range 33.33-50%, confidence range 83.33-88.89%). Functional enrichment of the therapeutic targets for SsnB showed that the top enriched items in the biological process were mainly the response to lipopolysaccharide (LPS)/bacterial origin and regulation of cytokine production. Finally, the PPI network and hub gene selection by maximal clique centrality (MCC) algorithm indicated the top ranked proteins were TNF-α, IL-1β, IL-6, AKT1, PPAR-γ, TLR4, CCL2, and TLR2.
Conclusion: These results emphasized the importance of TLR2/TLR4-MyD88-NF-κB-IL-1β/IL-6/TNF-α pathways as therapeutic targets of SsnB in inflammatory diseases.
期刊介绍:
Designed to objectively cover the process of bench to bedside development of cardiovascular drug, device and cell therapy, and to bring you the information you need most in a timely and useful format, Cardiovascular Drugs and Therapy takes a fresh and energetic look at advances in this dynamic field.
Homing in on the most exciting work being done on new therapeutic agents, Cardiovascular Drugs and Therapy focusses on developments in atherosclerosis, hyperlipidemia, diabetes, ischemic syndromes and arrhythmias. The Journal is an authoritative source of current and relevant information that is indispensable for basic and clinical investigators aiming for novel, breakthrough research as well as for cardiologists seeking to best serve their patients.
Providing you with a single, concise reference tool acknowledged to be among the finest in the world, Cardiovascular Drugs and Therapy is listed in Web of Science and PubMed/Medline among other abstracting and indexing services. The regular articles and frequent special topical issues equip you with an up-to-date source defined by the need for accurate information on an ever-evolving field. Cardiovascular Drugs and Therapy is a careful and accurate guide through the maze of new products and therapies which furnishes you with the details on cardiovascular pharmacology that you will refer to time and time again.