{"title":"结缔组织生长因子通过激活间充质干细胞中的 p38 MAPK 增强 TGF-β1 诱导的成骨分化。","authors":"Hironori Yoshida , Seiji Yokota , Kazuro Satoh , Akira Ishisaki , Naoyuki Chosa","doi":"10.1016/j.job.2024.01.004","DOIUrl":null,"url":null,"abstract":"<div><h3>Objectives</h3><p>Cellular differentiation is based on the effects of various growth factors. Transforming growth factor (TGF)-β1 plays a pivotal role in inducing osteogenic differentiation of mesenchymal stem cells (MSCs). In this study, we investigated the influence of connective tissue growth factor (CTGF), known to function synergistically with TGF-β1, on osteogenic differentiation in MSCs.</p></div><div><h3>Methods</h3><p>UE7T-13 cells were treated with TGF-β1 and/or CTGF. Subsequently, protein levels of intracellular signaling pathway molecules were determined through western blot analysis. The mRNA expression levels of osteogenic differentiation markers were investigated using reverse transcription-quantitative polymerase chain reaction. Bone matrix mineralization was evaluated through alizarin red staining.</p></div><div><h3>Results</h3><p>Co-treatment with TGF-β1 and CTGF resulted in the suppression of TGF-β1-induced phosphorylation of extracellular signal-regulated kinase 1/2, an intracellular signaling pathway molecule in MSCs, while significantly enhancing the phosphorylation of p38 mitogen-activated protein kinase (MAPK). In MSCs, co-treatment with CTGF and TGF-β1 led to increased expression levels of alkaline phosphatase and type I collagen, markers of osteogenic differentiation induced by TGF-β1. Osteopontin expression was observed only after TGF-β1 and CTGF co-treatment. Notably, bone sialoprotein and osteocalcin were significantly upregulated by treatment with CTGF alone. Furthermore, CTGF enhanced the TGF-β1-induced mineralization in MSCs, with complete suppression observed after treatment with a p38 MAPK inhibitor.</p></div><div><h3>Conclusions</h3><p>CTGF enhances TGF-β1-induced osteogenic differentiation and subsequent mineralization in MSCs by predominantly activating the p38 MAPK-dependent pathway.</p></div>","PeriodicalId":45851,"journal":{"name":"Journal of Oral Biosciences","volume":"66 1","pages":"Pages 68-75"},"PeriodicalIF":2.6000,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1349007924000045/pdfft?md5=33fc8542f2deb678691b978f1e2c398e&pid=1-s2.0-S1349007924000045-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Connective tissue growth factor enhances TGF-β1-induced osteogenic differentiation via activation of p38 MAPK in mesenchymal stem cells\",\"authors\":\"Hironori Yoshida , Seiji Yokota , Kazuro Satoh , Akira Ishisaki , Naoyuki Chosa\",\"doi\":\"10.1016/j.job.2024.01.004\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><h3>Objectives</h3><p>Cellular differentiation is based on the effects of various growth factors. Transforming growth factor (TGF)-β1 plays a pivotal role in inducing osteogenic differentiation of mesenchymal stem cells (MSCs). In this study, we investigated the influence of connective tissue growth factor (CTGF), known to function synergistically with TGF-β1, on osteogenic differentiation in MSCs.</p></div><div><h3>Methods</h3><p>UE7T-13 cells were treated with TGF-β1 and/or CTGF. Subsequently, protein levels of intracellular signaling pathway molecules were determined through western blot analysis. The mRNA expression levels of osteogenic differentiation markers were investigated using reverse transcription-quantitative polymerase chain reaction. Bone matrix mineralization was evaluated through alizarin red staining.</p></div><div><h3>Results</h3><p>Co-treatment with TGF-β1 and CTGF resulted in the suppression of TGF-β1-induced phosphorylation of extracellular signal-regulated kinase 1/2, an intracellular signaling pathway molecule in MSCs, while significantly enhancing the phosphorylation of p38 mitogen-activated protein kinase (MAPK). In MSCs, co-treatment with CTGF and TGF-β1 led to increased expression levels of alkaline phosphatase and type I collagen, markers of osteogenic differentiation induced by TGF-β1. Osteopontin expression was observed only after TGF-β1 and CTGF co-treatment. Notably, bone sialoprotein and osteocalcin were significantly upregulated by treatment with CTGF alone. Furthermore, CTGF enhanced the TGF-β1-induced mineralization in MSCs, with complete suppression observed after treatment with a p38 MAPK inhibitor.</p></div><div><h3>Conclusions</h3><p>CTGF enhances TGF-β1-induced osteogenic differentiation and subsequent mineralization in MSCs by predominantly activating the p38 MAPK-dependent pathway.</p></div>\",\"PeriodicalId\":45851,\"journal\":{\"name\":\"Journal of Oral Biosciences\",\"volume\":\"66 1\",\"pages\":\"Pages 68-75\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2024-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S1349007924000045/pdfft?md5=33fc8542f2deb678691b978f1e2c398e&pid=1-s2.0-S1349007924000045-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Oral Biosciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1349007924000045\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"DENTISTRY, ORAL SURGERY & MEDICINE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Oral Biosciences","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1349007924000045","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"DENTISTRY, ORAL SURGERY & MEDICINE","Score":null,"Total":0}
Connective tissue growth factor enhances TGF-β1-induced osteogenic differentiation via activation of p38 MAPK in mesenchymal stem cells
Objectives
Cellular differentiation is based on the effects of various growth factors. Transforming growth factor (TGF)-β1 plays a pivotal role in inducing osteogenic differentiation of mesenchymal stem cells (MSCs). In this study, we investigated the influence of connective tissue growth factor (CTGF), known to function synergistically with TGF-β1, on osteogenic differentiation in MSCs.
Methods
UE7T-13 cells were treated with TGF-β1 and/or CTGF. Subsequently, protein levels of intracellular signaling pathway molecules were determined through western blot analysis. The mRNA expression levels of osteogenic differentiation markers were investigated using reverse transcription-quantitative polymerase chain reaction. Bone matrix mineralization was evaluated through alizarin red staining.
Results
Co-treatment with TGF-β1 and CTGF resulted in the suppression of TGF-β1-induced phosphorylation of extracellular signal-regulated kinase 1/2, an intracellular signaling pathway molecule in MSCs, while significantly enhancing the phosphorylation of p38 mitogen-activated protein kinase (MAPK). In MSCs, co-treatment with CTGF and TGF-β1 led to increased expression levels of alkaline phosphatase and type I collagen, markers of osteogenic differentiation induced by TGF-β1. Osteopontin expression was observed only after TGF-β1 and CTGF co-treatment. Notably, bone sialoprotein and osteocalcin were significantly upregulated by treatment with CTGF alone. Furthermore, CTGF enhanced the TGF-β1-induced mineralization in MSCs, with complete suppression observed after treatment with a p38 MAPK inhibitor.
Conclusions
CTGF enhances TGF-β1-induced osteogenic differentiation and subsequent mineralization in MSCs by predominantly activating the p38 MAPK-dependent pathway.