{"title":"大脑多感官信息整合的分散神经回路","authors":"Wen-Hao Zhang","doi":"10.1007/978-981-99-7611-9_1","DOIUrl":null,"url":null,"abstract":"<p><p>The brain combines multisensory inputs together to obtain a complete and reliable description of the world. Recent experiments suggest that several interconnected multisensory brain areas are simultaneously involved to integrate multisensory information. It was unknown how these mutually connected multisensory areas achieve multisensory integration. To answer this question, using biologically plausible neural circuit models we developed a decentralized system for information integration that comprises multiple interconnected multisensory brain areas. Through studying an example of integrating visual and vestibular cues to infer heading direction, we show that such a decentralized system is well consistent with experimental observations. In particular, we demonstrate that this decentralized system can optimally integrate information by implementing sampling-based Bayesian inference. The Poisson variability of spike generation provides appropriate variability to drive sampling, and the interconnections between multisensory areas store the correlation prior between multisensory stimuli. The decentralized system predicts that optimally integrated information emerges locally from the dynamics of the communication between brain areas and sheds new light on the interpretation of the connectivity between multisensory brain areas.</p>","PeriodicalId":7270,"journal":{"name":"Advances in experimental medicine and biology","volume":"1437 ","pages":"1-21"},"PeriodicalIF":0.0000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Decentralized Neural Circuits of Multisensory Information Integration in the Brain.\",\"authors\":\"Wen-Hao Zhang\",\"doi\":\"10.1007/978-981-99-7611-9_1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The brain combines multisensory inputs together to obtain a complete and reliable description of the world. Recent experiments suggest that several interconnected multisensory brain areas are simultaneously involved to integrate multisensory information. It was unknown how these mutually connected multisensory areas achieve multisensory integration. To answer this question, using biologically plausible neural circuit models we developed a decentralized system for information integration that comprises multiple interconnected multisensory brain areas. Through studying an example of integrating visual and vestibular cues to infer heading direction, we show that such a decentralized system is well consistent with experimental observations. In particular, we demonstrate that this decentralized system can optimally integrate information by implementing sampling-based Bayesian inference. The Poisson variability of spike generation provides appropriate variability to drive sampling, and the interconnections between multisensory areas store the correlation prior between multisensory stimuli. The decentralized system predicts that optimally integrated information emerges locally from the dynamics of the communication between brain areas and sheds new light on the interpretation of the connectivity between multisensory brain areas.</p>\",\"PeriodicalId\":7270,\"journal\":{\"name\":\"Advances in experimental medicine and biology\",\"volume\":\"1437 \",\"pages\":\"1-21\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in experimental medicine and biology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1007/978-981-99-7611-9_1\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Biochemistry, Genetics and Molecular Biology\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in experimental medicine and biology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/978-981-99-7611-9_1","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
Decentralized Neural Circuits of Multisensory Information Integration in the Brain.
The brain combines multisensory inputs together to obtain a complete and reliable description of the world. Recent experiments suggest that several interconnected multisensory brain areas are simultaneously involved to integrate multisensory information. It was unknown how these mutually connected multisensory areas achieve multisensory integration. To answer this question, using biologically plausible neural circuit models we developed a decentralized system for information integration that comprises multiple interconnected multisensory brain areas. Through studying an example of integrating visual and vestibular cues to infer heading direction, we show that such a decentralized system is well consistent with experimental observations. In particular, we demonstrate that this decentralized system can optimally integrate information by implementing sampling-based Bayesian inference. The Poisson variability of spike generation provides appropriate variability to drive sampling, and the interconnections between multisensory areas store the correlation prior between multisensory stimuli. The decentralized system predicts that optimally integrated information emerges locally from the dynamics of the communication between brain areas and sheds new light on the interpretation of the connectivity between multisensory brain areas.
期刊介绍:
Advances in Experimental Medicine and Biology provides a platform for scientific contributions in the main disciplines of the biomedicine and the life sciences. This series publishes thematic volumes on contemporary research in the areas of microbiology, immunology, neurosciences, biochemistry, biomedical engineering, genetics, physiology, and cancer research. Covering emerging topics and techniques in basic and clinical science, it brings together clinicians and researchers from various fields.