利用微流体技术制造/集成用于生物应用的磁性纳米粒子:综述。

IF 3 4区 医学 Q3 ENGINEERING, BIOMEDICAL
Mahtab Ghasemi Toudeshkchouei, Hassan Abdoos
{"title":"利用微流体技术制造/集成用于生物应用的磁性纳米粒子:综述。","authors":"Mahtab Ghasemi Toudeshkchouei,&nbsp;Hassan Abdoos","doi":"10.1007/s10544-023-00693-9","DOIUrl":null,"url":null,"abstract":"<div><p>Nanostructured materials have gained significant attention in recent years for their potential in biological applications, such as cell and biomolecular sorting, as well as early detection of metastatic cancer. Among these materials, magnetic nanoparticles (MNPs) stand out for their easy functionalization, high specific surface area, chemical stability, and superparamagnetic properties. However, conventional fabrication methods can lead to inconsistencies in MNPs' characteristics and performance, highlighting the need for a cost-effective, controllable, and reproducible synthesis approach. In this review, we will discuss the utilization of microfluidic technology as a cutting-edge strategy for the continuous and regulated synthesis of MNPs. This approach has proven effective in producing MNPs with a superior biomedical performance by offering precise control over particle size, shape, and surface properties. We will examine the latest research findings on developing and integrating MNPs synthesized through continuous microfluidic processes for a wide range of biological applications. By providing an overview of the current state of the field, this review aims to showcase the advantages of microfluidics in the fabrication and integration of MNPs, emphasizing their potential to revolutionize diagnostic and therapeutic methods within the realm of biotechnology.</p><h3>Graphical Abstract</h3>\n<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":490,"journal":{"name":"Biomedical Microdevices","volume":"26 1","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2024-01-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Magnetic nanoparticles fabricated/integrated with microfluidics for biological applications: A review\",\"authors\":\"Mahtab Ghasemi Toudeshkchouei,&nbsp;Hassan Abdoos\",\"doi\":\"10.1007/s10544-023-00693-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Nanostructured materials have gained significant attention in recent years for their potential in biological applications, such as cell and biomolecular sorting, as well as early detection of metastatic cancer. Among these materials, magnetic nanoparticles (MNPs) stand out for their easy functionalization, high specific surface area, chemical stability, and superparamagnetic properties. However, conventional fabrication methods can lead to inconsistencies in MNPs' characteristics and performance, highlighting the need for a cost-effective, controllable, and reproducible synthesis approach. In this review, we will discuss the utilization of microfluidic technology as a cutting-edge strategy for the continuous and regulated synthesis of MNPs. This approach has proven effective in producing MNPs with a superior biomedical performance by offering precise control over particle size, shape, and surface properties. We will examine the latest research findings on developing and integrating MNPs synthesized through continuous microfluidic processes for a wide range of biological applications. By providing an overview of the current state of the field, this review aims to showcase the advantages of microfluidics in the fabrication and integration of MNPs, emphasizing their potential to revolutionize diagnostic and therapeutic methods within the realm of biotechnology.</p><h3>Graphical Abstract</h3>\\n<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>\",\"PeriodicalId\":490,\"journal\":{\"name\":\"Biomedical Microdevices\",\"volume\":\"26 1\",\"pages\":\"\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2024-01-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biomedical Microdevices\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10544-023-00693-9\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomedical Microdevices","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10544-023-00693-9","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

摘要

近年来,纳米结构材料因其在生物应用(如细胞和生物分子分选以及转移性癌症的早期检测)方面的潜力而备受关注。在这些材料中,磁性纳米粒子(MNPs)因其易于功能化、高比表面积、化学稳定性和超顺磁性能而脱颖而出。然而,传统的制造方法会导致 MNPs 的特性和性能不一致,这就凸显了对具有成本效益、可控性和可重复性的合成方法的需求。在本综述中,我们将讨论利用微流体技术作为连续、可控合成 MNPs 的前沿策略。事实证明,这种方法能精确控制颗粒大小、形状和表面特性,从而有效生产出具有卓越生物医学性能的 MNPs。我们将探讨有关开发和整合通过连续微流体工艺合成的 MNPs 以用于广泛生物应用的最新研究成果。通过概述该领域的现状,本综述旨在展示微流体技术在制造和集成 MNPs 方面的优势,强调其在生物技术领域彻底改变诊断和治疗方法的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Magnetic nanoparticles fabricated/integrated with microfluidics for biological applications: A review

Nanostructured materials have gained significant attention in recent years for their potential in biological applications, such as cell and biomolecular sorting, as well as early detection of metastatic cancer. Among these materials, magnetic nanoparticles (MNPs) stand out for their easy functionalization, high specific surface area, chemical stability, and superparamagnetic properties. However, conventional fabrication methods can lead to inconsistencies in MNPs' characteristics and performance, highlighting the need for a cost-effective, controllable, and reproducible synthesis approach. In this review, we will discuss the utilization of microfluidic technology as a cutting-edge strategy for the continuous and regulated synthesis of MNPs. This approach has proven effective in producing MNPs with a superior biomedical performance by offering precise control over particle size, shape, and surface properties. We will examine the latest research findings on developing and integrating MNPs synthesized through continuous microfluidic processes for a wide range of biological applications. By providing an overview of the current state of the field, this review aims to showcase the advantages of microfluidics in the fabrication and integration of MNPs, emphasizing their potential to revolutionize diagnostic and therapeutic methods within the realm of biotechnology.

Graphical Abstract

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Biomedical Microdevices
Biomedical Microdevices 工程技术-工程:生物医学
CiteScore
6.90
自引率
3.60%
发文量
32
审稿时长
6 months
期刊介绍: Biomedical Microdevices: BioMEMS and Biomedical Nanotechnology is an interdisciplinary periodical devoted to all aspects of research in the medical diagnostic and therapeutic applications of Micro-Electro-Mechanical Systems (BioMEMS) and nanotechnology for medicine and biology. General subjects of interest include the design, characterization, testing, modeling and clinical validation of microfabricated systems, and their integration on-chip and in larger functional units. The specific interests of the Journal include systems for neural stimulation and recording, bioseparation technologies such as nanofilters and electrophoretic equipment, miniaturized analytic and DNA identification systems, biosensors, and micro/nanotechnologies for cell and tissue research, tissue engineering, cell transplantation, and the controlled release of drugs and biological molecules. Contributions reporting on fundamental and applied investigations of the material science, biochemistry, and physics of biomedical microdevices and nanotechnology are encouraged. A non-exhaustive list of fields of interest includes: nanoparticle synthesis, characterization, and validation of therapeutic or imaging efficacy in animal models; biocompatibility; biochemical modification of microfabricated devices, with reference to non-specific protein adsorption, and the active immobilization and patterning of proteins on micro/nanofabricated surfaces; the dynamics of fluids in micro-and-nano-fabricated channels; the electromechanical and structural response of micro/nanofabricated systems; the interactions of microdevices with cells and tissues, including biocompatibility and biodegradation studies; variations in the characteristics of the systems as a function of the micro/nanofabrication parameters.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信